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Topics of the presentation

e Case study of Anomaly Detection in Industrial Quality Control System

e Use of Generative Al for Anomaly Detection

e Iransparency & Trustworthiness in Anomaly Detection Systems

o Review an explainable AD system architecture* that combines
VAE-GAN models with the LIME and SHAP explanation
methods.

o Quantify the AD system efficacy using anomaly scores

o Use XAl methods to determine if anomalies are indeed detected
for the rightreason, improving the framework of Ravi et al*.

* Ravi, A., Yu, X., Santelices, |., Karray, F., & Fidan, B. (2021, August). General frameworks for anomaly detection
explainability: comparative study. In 2021 |IEEE International Conference on Autonomous Systems (ICAS) (pp. 1-5). IEEE.
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Defining Defective & Non-defective

Consider an industrial quality control system use case.

« Non defective products are common and easy to capture and
describe
« Defective products are rare and unpredictable

— setup for anomaly detection.

Non-defective:

Defective: e §

Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., & Steger, C. (2021). The MVTec anomaly detection dataset: a
comprehensive real-world dataset for unsupervised anomaly detection. /nternational Journal of Computer Vision.
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VAE-GAN model for non-defective instances @IRule

Training the Variational Auto-Encoder
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Anomaly detection with VAE-GAN

Anomaly Detection with Variational Auto-Encoder

Non-defective Approx. reconstruction of
object o] the non-defective object

Approx. reconstruction of

Defective the closest non-defective
object o] object

(losing the defect area)
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Anomaly detection with generative Al

Pipeline with a Variational Auto-Encoder
@

AN Reconstruction to the non-defective object &'
(B) VAE-GAN model ) s
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Anomaly detection with generative Al

Pipeline with a Variational Auto-Encoder

AN Reconstruction losing the defect area §
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Defective object

f (B) VAE-GAN model
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Anomaly detection threshold

Anomalous: if a > 7%

Finding the optimal threshold t* means solving an
optimization problem.

— arginax \/TPR(T) x (1 = FPR(7))

True Positive Rate : Anomalous as anomalous
False Positive Rate : Normal as anomalous
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Anomaly detection threshold
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Contribution of XAl in Anomaly Detection

e We have the anomaly map + a detection threshold.
Is it enough for explaining anomaly?

— Of course not.

e Problem: anomaly map a is

the sum of reconstruction error (noise) + anomaly (if any)

— Need a way to:

o separate the anomaly from the noise;
o and to localize the region of the anomaly.

e More precise information
e |ocalization of anomaly

e |sthe anomaly a real anomaly?
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Anomaly region localization

Explaining anomaly detection with XAl
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Explaining Anomalies
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Explaining Anomalies
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Revealing model misbehaviours

Samples may be classified as anomalous for the wrong reason,
and only XAl can reveal such behaviour.

£ ¢ m BL Bs max(Jr) mazx(Js) 7y
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Cut 14

model detect anomaly from a ...but the anomaly is a small cut
badly reconstructed region... region in a different location.
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Conclusions

e XAl methods are relevant in finding the true drivers behind Al
systems using techniques like classification and/or anomaly
detection.

e (Case study based on reconstruction error maps generated from
VAE-GAN models.

e Multiple XAl techniques to separate the reconstruction error
(noise) from the anomaly (if any).

e A sample may be detected as anomalous for the wrong reasons,
yet this misbehaviour may not be detectable from the information
provided by the anomaly detection system alone — Role of XAl
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Supplementary Material

Hazelnut dataset

Screw dataset

1.00 A : 1.00 4 :
7:0.367 : . ° (A) 7*:0.3169 (B)
- - 0.75 ° ° % o ° ° 0.75 4 : o, ° o
n ~ | ° o o .: ° : 8° °
g{) % 0.50 . .,&‘. o °0 ...%. ® 0.50 E .‘.‘ :;.:% % -... °
£ 8 o025- . I 89 025 iy gdest
0g00 0o ° ° ® %, o °
f% S 0.00 &? . 0.00 - ‘.m’_.-""v‘. LIRS
NA - ¢ comseecs NA - oo emescmel
1.00 ° © § 1.00 4 com® o oo®
7:0.36% o & % ° e (C) 7%:0.3169 . (D)
N — 0754 %6%0 ° 3, ° o 0.75 4 -e °
0] ~ ° ] ¢ ° % o o °
on ™ 050 o % . 8 0.50 - i e e
-S \H/ ® L4 o ®e : a.
% 3 0.25 A 00 % . ° ° 0.25 + ooq:.'.. oo
ZE e ter 0004 Saew Yot oe
NA 4 ¢ ecomsees NA - eo emesccmed
1.00 4 : 1.00 4
7%:0.367 : - (E) 7%:0.3169 (F)
0 o 0757 : el s . 0.75 -
o 050 e "8 w0t o o°%" 0.50 i .3'#"' 5
S 5 o cat ° 8 Lo “e AL .
E 3 025 - T 0.25 - e 31‘.““ .
o g ae of o 0t go °
A 0.00 ‘. 0.00 - * s o
NA 4 ¢ ecommees NA - eo emesccmed
0.4 0.6 0.8 0.3 0.4 0.5 0.6
Anomaly score o Anomaly score
@® Good/Ok Good/misclassified @ Anomaly/Ok ® Anomaly/misclassified

Can | trust my anomaly detection system? A case study based on XAl

l

The 2nd World Conference on eXplainable Artificial Intelligence

18



