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Medical Image Registration: a Review 

 

 

Abstract 

This paper presents a review of automated image registration methodologies that have been 

used in the medical field. The aim of this paper is to be an introduction to the field, provide 

knowledge on the work that has been developed and to be a suitable reference for those who 

are looking for registration methods for a specific application. The registration methodologies 

under review are classified into intensity or feature based. The main steps of these 

methodologies, the common geometric transformations, the similarity measures, and accuracy 

assessment techniques are introduced and described. 

 

Keywords: computational methods; image analysis; image alignment, matching, warping; 
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1. Introduction 

Image registration, also known as image fusion, matching or warping, can be defined as the 

process of aligning two or more images. The goal of an image registration method is to find 

the optimal transformation that best aligns the structures of interest in the input images. Image 

registration is a crucial step for image analysis in which valuable information is conveyed in 

more than one image; i.e., images acquired at different times, from distinct viewpoints or by 

different sensors can be complementary. Therefore, accurate integration (or fusion) of the 

useful information from two or more images is very important. 

Much of the research that has been developed for medical image analysis was devoted to 

image registration (Pluim and Fitzpatrick, 2003). Applications of image registration in the 

medical field include: fusion of anatomical images from Computerized Tomography (CT) or 

Magnetic Resonance Imaging (MRI) images with functional images from Positron Emission 

Tomography (PET), Single-Photon Emission Computed Tomography (SPECT) or Functional 

Magnetic Resonance Imaging (fMRI); intervention and treatment planning (Gering et al., 

1999; Gering et al., 2001; Staring et al., 2009); computer-aided diagnosis and disease 

following-up (Huang et al., 2009); surgery simulation (Miller et al., 2010); atlas building and 

comparison (Freeborough and Fox, 1998; Ganser et al., 2004; Gooya et al., 2011; Joshi et al., 

2004; Leow et al., 2006; Wu et al., 2009); radiation therapy (Foskey et al., 2005; Lavely et al., 

2004); assisted/guided surgery (Huang et al., 2009; Hurvitz and Joskowicz, 2008; King et al., 

2010; Maurer et al., 1997); anatomy segmentation (Collins and Evans, 1997; Dornheim et al., 

2005; Frangi et al., 2003; Gao et al., 2010; Isgum et al., 2009; Martin et al., 2008; Oliveira et 

al., in press; Zhuang et al., 2010); computational model building (Grosland et al., 2009); and 

image subtraction for contrast enhanced images (Maksimov et al., 2009). For PET and 

SPECT images, registration has also been useful for correct scatter attenuation and partial 

volume corrections based on CT images (Bai and Brady, 2011; Hajnal et al., 2001). 

Medical image registration has been developed for almost all anatomic parts or organs of the 

human body: brain (Ashburner, 2007; Auzias et al., 2011; Bhagalia et al., 2009; Cho et al., 

2011; Collignon et al., 1997; Duay et al., 2008; Gering et al., 2001; Guimond et al., 2001; 

Hipwell et al., 2003; Itti et al., 1997; Kassam and Wood, 1996; Liao and Chung, 2010; Mayer 

et al., 2011; Postelnicu et al., 2009; Shen, 2004; 2007; Shen and Davatzikos, 2002; Studholme 

et al., 1997; Wu et al., 2006b; Xie and Farin, 2004; Xu et al., 2009; Zhu and Cochoff, 2002), 



retina (Cideciyan, 1995; Fischer and Modersitzki, 2004; Lin and Medioni, 2008; Matsopoulos 

et al., 2004; Stewart et al., 2003; Tsai et al., 2010), chest/lung (Bhagalia et al., 2009; Mattes et 

al., 2003), whole thorax (Loeckx et al., 2003), breast (Karaçali, 2007; Rohlfing et al., 2003; 

Rueckert et al., 1999; Schnabel et al., 2003; Serifovic-Trbalic et al., 2008; Washington and 

Miga, 2004), abdomen (liver, kidney and spleen) (Brock et al., 2005), prostate (Alterovitza et 

al., 2006; Foskey et al., 2005), entire body (Shekhar et al., 2005), cervical (Staring et al., 

2009), heart (Dey et al., 1999; Grau et al., 2007; Huang et al., 2009; Ledesma-Carbayo et al., 

2005; Rhode et al., 2003; Shekhar and Zagrodsky, 2002; Shekhar et al., 2004), pelvis 

(Hamilton et al., 1999; Shen, 2004; 2007), wrist (Giessen et al., 2009), vascular structures 

(Groher et al., 2009; Hipwell et al., 2003; Ruijters et al., 2009), bones (Andreetto et al., 2004; 

Heger et al., 2005; Hurvitz and Joskowicz, 2008; Tang et al., 2006), knee (Mahfouz et al., 

2003; Yamazaki et al., 2004), and spine (Tomazevic et al., 2003). 

Recent improvements in medical imaging have allowed the acquisition of temporal image 

sequences. In comparison to static images, these sequences offer additional information about 

the motion of the imaged organs, such as the heart. Examples of spatiotemporal image 

registration of the heart can be found in (Grau et al., 2007; Ledesma-Carbayo et al., 2005; 

Perperidis et al., 2005; Peyrat et al., 2010), and a solution for temporal plantar pressure image 

sequences registration is presented in (Oliveira et al., 2011). 

In the literature, several reviews on image registration methods can be found: overall image 

registration in (Brown, 1992; Salvi et al., 2007; Wyawahare et al., 2009; Zitová and Flusser, 

2003), medical image registration in general (Bronzino, 2000; Elsen et al., 1993; Fischer and 

Modersitzki, 2008; Goshtasby, 2005; Hajnal et al., 2001; Hill et al., 2001; Maintz and 

Viergever, 1998; Modersitzki, 2004; Slomka and Baum, 2009), and hierarchical non-linear 

medical image registration (Lester and Arridge, 1999). Also there are reviews that focus on 

specific anatomical parts, such as: cardiac (Mäkelä et al., 2002), retina (Laliberté et al., 2003), 

breast (Guo et al., 2006) and brain (West et al., 1997). Other surveys focus on the image 

similarity measure in (Penney et al., 1998; Pluim et al., 2003; Pluim et al., 2004). 

A large number of software solutions have been presented for medical image registration; 

examples of free-open-source software packages include: FAIR (Modersitzki, 2009) – source 

code in Matlab; AIR (Woods, Roger P.  et al., 1998; Woods, Roger P. et al., 1998) – source 

code in C; ITK (Ibáñez et al., 2005) – source code in C++; 3D Slicer (Gering et al., 1999; 

Pieper et al., 2004; Pieper et al., 2006) – almost all source code in C++; FLIRT (Jenkinson 

and Smith, 2001) – source code in C++; and Elastix (Klein et al., 2010) – source code in C++. 



Both 3D Slicer and Elastix are based on the ITK library. ART is also a free software package 

distributed as binary files for Linux and Mac operating systems. The well-known Statistical 

Parametric Mapping (SPM) (Ashburner and Friston, 1999; Friston, K. J. et al., 1995) software 

package has been designed for the analysis of brain imaging data sequences, but it also 

includes a registration tool. An extended list of free software solutions for medical image 

analysis can be found on the Neuroimaging Informatics Tools and Resources Clearinghouse 

(NITRC) webpage. 

Besides free software for image registration, there are free medical images available for study 

purposes. For instance, on the BrainWeb project webpage, a simulated brain database with 

three MRI sequences (T1, T2, and proton-density) is available; and on the PET-SORTEO 

project webpage, simulated PET images are accessible. 

Several comparisons of image registration methodologies have been published. For instance, 

in (West et al., 1997) twelve registration methodologies, some fully automated and others 

with user interaction, were compared. Those methodologies were compared for the 

registration of CT, PET and MR brain volumes. The accuracy of the methodologies under 

comparison was assessed by relating the geometric transformation found with a gold standard 

obtained based on fiducial markers attached to the skull. In (Zhilkin and Alexander, 2004) the 

PA − Patch Algorithm (Zhilkin and Alexander, 2000) is compared with the AIR 3.0, COCGV, 

FLIRT−FMRIB’s, IR, and SPM algorithms on monomodal registration by using affine 

geometric transformations. Regarding non-rigid registration, fourteen algorithms were 

compared in the registration of brains in (Klein et al., 2009), namely: AIR, ANIMAL, ART, 

Diffeomorphic Demons, FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN, and four different 

SPM5 algorithms (“SPM2-type” and regular Normalization, Unified Segmentation, and the 

DARTEL Toolbox). Other comparisons can be found in (Ardekani et al., 2005; 

Economopoulos et al., 2010; Hellier et al., 2003; McLaughlin et al., 2005; West et al., 1999; 

Yassa and Stark, 2009). 

Image registration is often referred to as image fusion, image matching or image warping; 

however to avoid any ambiguities these terms will be designated the following definitions for 

the rest of this paper: image fusion is used to designate the process of combining two or more 

images into a single image; image matching, as the process of establishing the 

correspondences among the structures in input images without explicitly aligning them; and 

image warping, as the application of a geometric transformation on an input image. Also, 



“fixed image” is designated as the image that remains unchanged, and “moving image” as the 

image that is transformed using the “fixed image” as a reference. 

The main goals of this paper are to introduce the works done on medical image registration, 

and identify and introduce the key guidelines that have been defined and addressed. 

Although several reviews on medical image registration can be found, e.g. (Slomka and 

Baum, 2009), this review here has a wide coverage and is very general, as no particular 

attention is given to a specific multimodality image registration application, however, detailed 

information concerning the main steps of common registration algorithms is given. 

The paper is organized as follows: In the next section, the image registration methodologies 

are classified. Afterwards, common registration methodologies are introduced and explained, 

focusing on their main features, such as: geometric transformations, similarity measures and 

optimizers. Then, in section 4, the current techniques for accuracy assessment are presented 

and, finally, in the last section, a discussion is addressed. 

2. Registration methodologies - classification 

Basically, the registration of input images requires the selection of the feature space, a 

similarity measure or alignment quality, a transformation type and a search strategy. A great 

number of medical image registration methodologies have been presented, and several criteria 

have been proposed to classify them. Elsen, Pol and Viergever (Elsen et al., 1993) classified 

the registration methodologies by the data dimensionality (1D, 2D, 3D, 4D, …), source of the 

image features used to make the registration (intrinsic or extrinsic properties of patients), 

transformation domain (local or global), transformation elasticity (rigid, affine, projective or 

curved), tightness of property coupling (interpolating or approximating), parameter 

determination (direct or search-oriented), and interaction (interactive, semi-automatic or 

automatic). This classification scheme was further detailed and extended to nine fundamental 

criteria by Maintz and Viergever (Maintz and Viergever, 1998), where each criterion was 

divided into one or more sub-criteria (Table 1). 

 

[Insert Table 1 about here] 

 



The registration of images from the same modality, but obtained using different acquisition 

parameters, such as, the registration of T1-MRI images with T2-MRI or proton density MRI 

images, are often classified as multimodal. 

Registration methodologies are also commonly classified using the feature space image 

information. This information may be the intensity of the raw voxels, the intensity gradient, 

statistical information related to the voxel intensity, or structures extracted from the images to 

be registered, such as, sets of points, edges, contours, graphs, surfaces and volumes.  

Registration methodologies based on voxel intensity are commonly known as intensity based, 

and those based on the geometrical structures extracted from the images as feature based or 

geometrical based (Hawkes, 2001). Other methodologies use the images in the frequency 

domain or the Fourier transform properties to achieve optimal registration, and are known as 

frequency or Fourier based. 

Another common classification criterion for registration is based on the amount of image 

information that is used in the process. A methodology is classified as global, if all voxels 

presented in the region of the interest (ROI) are used. On the other hand, it is classified as 

local, if only a part of the voxels in the ROI is used. Usually, the intensity based methods are 

global and the feature based methods are local. 

A common medical image, I, can be defined as a function 3:I D R R⊂ → ; that is, I is defined 

in a subset of a three dimensional space and has values in R. However, in some imaging 

modalities, like diffusion tensor magnet resonance imaging (DT-MRI), the image can have 

values in a multidimensional space. In this case, the images are also known as multichannel 

images, vector images or tensor images. In this work, no distinction has been made for this 

feature, and all images are assumed to be defined in a 3D space, since volumetric images are 

the most common image data type in medical imaging and two dimensional images can 

always be considered in a 3D space. 

3. Registration methodologies 

Most of the intensity based registration methodologies can be illustrated by the diagram in 

Figure 1. The main idea is to search iteratively for the geometric transformation that, when 

applied to the moving image, optimizes i.e. minimizes or maximizes a similarity measure, 

also known as the cost function. The similarity measure is related to voxel intensity and is 



computed in the overlapped regions of the input images. The optimizer has the function of 

defining the search strategy. The aim of the interpolator is to resample the voxel intensity into 

the new coordinate system according to the geometric transformation found. 

Whenever possible, a pre-registration transformation, which makes the moving images closer 

to the fixed imaged in terms of the similarity measure, is used as an initial solution for the 

registration algorithm. A good pre-registration allows a faster convergence of the optimizer 

and decreases the likelihood of convergence to a local optimum. 

 

[Insert Figure 1 about here] 

 

For the feature based registration methodologies there are two main approaches to search for 

the optimal transformation after the feature segmentation process in the input images: 1) the 

matching among features is established using some criterion, e.g. based on geometrical, 

physical or statistical properties. Then, the geometric transformation is established based on 

the matching found (Figure 2). An example of such approach is when the features extracted, 

i.e. segmented, from the input images, are sets of points and each point is represented by a 

descriptor. Then, the “corresponding costs” are the “distances” between the descriptors of the 

possible point pairs, and the similarity measure between the input images is usually given by 

the sum of all the “corresponding costs” established (Bastos and Tavares, 2004; Oliveira and 

Tavares, 2009; Oliveira et al., 2009a). As such, this approach is reliable when the descriptors 

used are invariant to the geometric transformations to be assessed. 2) the matching and the 

transformation are defined concurrently based on the optimization of a similarity measure 

between the features extracted from the input images. The algorithm of this registration 

approach is quite similar to the algorithm in Figure 1; however, in this case, rather than the 

original intensity images, the features extracted are used to define the registration result. 

 

[Insert Figure 2 about here] 

 

The registration methodologies based on image moments, such as the principal axes  

technique (Alpert et al., 1990; Dhawan et al., 1995; Faber and Stokely, 1988), can be 



classified as feature based, since the basis of the registration is a set of image descriptors 

extracted from the input images. However, the algorithm used is different from the ones 

previously presented. Briefly, in this methodology, the translational component of the 

transform is based on the centres of mass of the images; and the rotational component is based 

on the eigenvectors of the second order central moments matrix of the images. 

In the next sections, the registration algorithms illustrated in Figures 1 and 2 are described. 

3.1 Geometric transformations 

The choice of the geometric transformation model used is crucial to the success of a 

registration algorithm, and is highly dependent on the nature of the data to be registered. 

Usually, the geometric transformations are divided into rigid and non-rigid classes. The rigid 

transformation is the simplest one, and in a 3D space, it can be defined by 6 parameters or 

degrees-of-freedom: 3 translational and 3 rotational parameters. The non-rigid transformation 

class includes the similarity transformation (translation, rotation and uniform scaling), affine 

(translation, rotation, scaling, and shear), projective, and curved. The curved transformation is 

also commonly referred to as a deformable, elastic or fluid transformation. The rigid and 

similarity geometric transformations are subsets of the affine transformation. 

A 3D affine transformation 3 3:T R R→ is given by ( )T X DX S= + , where D is a 3 3×  

matrix representing the rotation, scaling and shearing, and S is a 3 1×  vector representing the 

translation or shift. Sometimes, affine transformations are classified as linear; however, such 

classification is not mathematically correct, since the function T is linear if, and only if, 

( ) ( ) ( )T aX bY aT X bT Y+ = + , which implies that the translational component S of the 

transformation be null. The affine geometric transformation is usually represented with 

homogeneous coordinates, which has the advantage of using only a 4 4×  matrix to represent 

the whole transformation. 

According to the literature, a rigid geometric transformation is mainly applied in two 

situations. One is in the registration of rigid structures, such as bones (Andreetto et al., 2004; 

Heger et al., 2005; Livyatan et al., 2003; Tang et al., 2006) and the other is in pre-registration 

before a more complex geometric transformation (Auer et al., 2005; Hellier and Barillot, 

2004; Lötjönen and Mäkelä, 2001; Mattes et al., 2003). The use of affine non-rigid 

transformations in the final image registration is not common; but, some examples can be 

found in (Butz and Thiran, 2001; Jenkinson and Smith, 2001; Meyer et al., 1997; Zhilkin and 



Alexander, 2000; Zvitia et al., 2010). Like the rigid transformation, the affine non-rigid 

transformation is also sometimes used in a pre-registration for a final curve registration (Balci 

et al., 2007; Karaçali, 2007; Zhuang et al., 2010). The affine transformations, both rigid and 

non-rigid, have been used in the registration of ultrasound images (King et al., 2010; Meyer et 

al., 1999; Roche et al., 2001; Shekhar and Zagrodsky, 2002; Shekhar et al., 2004), since the 

low resolution and low signal-to-noise ratio of the ultrasound images makes the accurate 

registration difficult when more complex transformations are used. 

Most approaches for medical image registration are based on curved transformations, since 

the almost all anatomical parts, or organs, of the human body are, in fact, deformable 

structures. The simplest curved transformations are based on polynomials of a degree superior 

to one, and, in a similar way to the affine transformations. Their implementation is very 

simple as they can be defined by a deformation matrix and a translation vector. However, 

these transformations are rarely used since they do not usually represent the real deformations 

involved in the medical images. 

Basically, two kinds of curved deformations have been used in medical image registration: 

free-form transformations, in which any deformation is allowed; and guided deformations, in 

which the deformation is controlled by a physical model that has taken into account the 

material properties, such as tissue elasticity or fluid flow. It should be noted that sometimes 

the registration algorithms based on fluid flow are classified as free-form, since they are able 

to address almost any deformation. 

In many free-form deformation models, a grid of control points is defined in order to 

determine the deformation involved. The points of such a grid are moved individually in the 

direction that optimizes the similarity measure, defining local deformations. Transformation 

between control points is propagated by interpolation; for example, using linear interpolation 

(Kjems et al., 1999), or other convex kernels (Gaens et al., 1998; Lötjönen and Mäkelä, 

2001). The most popular interpolator used for free-form deformation is probably the cubic B-

spline (Bai and Brady, 2011; Balci et al., 2007; Bhagalia et al., 2009; Kabus et al., 2004; 

Khader and Hamza, 2011; Kybic and Unser, 2003; Mattes et al., 2003; Rohlfing and Maurer, 

2001; Rohlfing et al., 2003; Rueckert et al., 1999; Studholme et al., 2000; Xie and Farin, 

2004); but, B-splines of other degrees can also be used (Loeckx et al., 2010). 

Originally, the free-form deformation based on the cubic B-spline was defined in a regular 

grid of points. Lately, in (Schnabel et al., 2001), a new framework was proposed by extending 



and generalizing the technique previously presented in (Rueckert et al., 1999). On the other 

hand, some authors have developed a deformable registration method by defining the global 

transformation as a series of locally affine transformations (Periaswamy and Farid, 2003; 

Shekhar et al., 2005). 

Some elastic models handle the objects represented in the images as elastic solids (Alexander 

and Gee, 2000; Christensen and Johnson, 2001; Christensen et al., 1994; Davatzikos, 1997; 

Gefen et al., 2003). The main idea of image registration methodologies based on elastic solids 

is straightforward: the internal elastic forces of the solid oppose the deformation, while the 

external forces driven by the similarity measure try to deform the data to fit the body 

configuration. Thus, the moving image is deformed until the internal and external forces reach 

an equilibrium. 

Other elastic based registration methods are based on finite element models (Ferrant et al., 

2002; Grosland et al., 2009). These models divide the input image into cells and assign a 

physical description of the tissue property to these cells. 

Thin-plate splines (TPS) based registration methodologies are also based on deformable solid 

properties; however, the fundamentals of the approach are different from the previous ones 

(Auer et al., 2005; Meyer et al., 1999; Meyer et al., 1997). In these methodologies, a set of 

control points is moved along the direction that optimizes the similarity measure used. The 

propagation of the deformation to the neighbours of the control points is defined by the thin-

plate model. For point correspondence based registrations, the TPS is based on the 

correspondences found between the sets. TPS is a interpolation function that minimizes the 

bending energy (Holden, 2008). Some authors, as in (Rohr et al., 2001; Serifovic-Trbalic et 

al., 2008), have used approximating TPS rather than interpolating TPS, since the former are 

more robust to the outliers which can occur in the landmark or point localizations. 

The deformable registrations based on TPS are global, that is, when a control point is moved, 

its new position affects the whole deformation. The registrations based on free-form B-spline 

deformations are local; however, they also can be classified between a global registration 

model and a pure local model, since their locality can be controlled by varying the grid or 

mesh spacing and consequently the number of degrees-of-freedom. Since the free-form B-

spline deformations are local, it is essential to correct the global misregistration before 

computing the deformation involved, for instance, using an affine transformation (Rueckert et 

al., 1999). 



The expression “elastic registration” is sometimes used as a synonym of a curved or 

deformable registration, however for the rest of this paper it is used just for the registration 

methodologies whose geometric transformation is based on the elastic properties of solid 

objects. 

In flow based registration algorithms, the registration problem is addressed as a motion 

problem. As such, the content of an image moves continually towards the other image, and 

this movement or deformation is driven by the minimization of the energy of the physical 

model adopted. 

Flow based registration algorithms can be divided into two classes: fluid flow and optical 

flow. Some examples of registration algorithms based on fluid flow can be found in: 

(Ashburner, 2007; Auzias et al., 2011; Bro-Nielsen and Gramkow, 1996; Chiang et al., 2008; 

Christensen et al., 1997; Christensen et al., 1994; 1996; D’Agostino et al., 2003; Freeborough 

and Fox, 1998; Guimond et al., 2002; Hermosillo et al., 2002; Joshi et al., 2004; Leow et al., 

2005; Studholme et al., 2006; Tosun and Prince, 2008). 

The well-known demons algorithm and its variations (Gooya et al., 2011; Guimond et al., 

2002; Guimond et al., 2001; Thirion, 1998; Vercauteren et al., 2007; 2009; Wang et al., 2005; 

Yeo et al., 2010a) are examples of optical flow based registration algorithms. Other examples 

of optical flow based algorithms can be found in (Hellier et al., 2001; Tosun and Prince, 

2008). The demons algorithm is based on a diffusion process. When applied on monomodal 

registration, the demons based registration is a variant of the optical flow based approach. If 

instead of considering the original image intensity values, the image gradients are used, then 

this algorithm can also be successfully applied on some multimodal image registrations. 

Further details on demons algorithm can be found in (Pennec et al., 1999). 

The fluid based transformations allow larger deformations than the elastic based 

transformations. Thus, a low-dimensional elastic transformation is sometimes used prior to a 

high-dimensional fluid registration (Christensen et al., 1997). 

The registration algorithms based on B-splines address the image deformations as a 

combination of basis functions, particularly the B-splines, but other basis functions have also 

been used (Ashburner and Friston, 1999; Friston, K. J.  et al., 1995). Thus, the registration 

problem can be seen as a problem of finding a set of coefficients for the basis functions that 

optimizes the similarity measure. 



To preserve the topology of the structures represented in the images to be registered, the 

geometric transformation needs to be a diffeomorphism; that is, to be invertible and 

differentiable mapping with differentiable inverse. The registration methodologies that use 

diffeomorphic transformations are known as diffeomorphic image registration methodologies. 

The set of elastic-solid based registration methodologies are examples of these 

methodologies. The free-form and flow based registration methodologies can also be 

diffeomorphic if a penalty term is added to the similarity measure or adequate constraints are 

used in order to avoid undesirable deformations. If not degenerated, the affine transformations 

are also diffeomorphic. Examples of registration algorithms that include diffeomorphic 

transformations can be found in (Ashburner, 2007; Auzias et al., 2011; Beg et al., 2005; Geng 

et al., 2011; Joshi and Miller, 2000; Marsland and Twining, 2004; Rao et al., 2004; 

Vercauteren et al., 2007; 2009; Yeo et al., 2010a; Yeo et al., 2009). 

A comparative study among transformation functions for non-rigid medical image registration 

based on points correspondence is presented in (Zagorchev and Goshtasby, 2006). 

Additionally, a study on geometric transformations for non-rigid image registration can be 

found in (Crum et al., 2004) and a review in (Holden, 2008). Closely related to the medical 

image registration is the computational anatomy, that is, the computational models of organ 

deformations. A study on this subject can be found in (Miller et al., 2002). 

3.2 Similarity measures 

The similarity measures here are dived into two classes, the intensity and feature based 

methods. Depending on the features used, some similarity measures can be included in both 

classes. 

Normally, the similarity measure used for deformable image registration is composed of at 

least two terms: one related to the voxel intensity or structures similarity, and the other one to 

the deformation field (Ashburner et al., 1999; Auzias et al., 2011; Collins and Evans, 1997; 

Hermosillo et al., 2002; Lötjönen and Mäkelä, 2001; Lu et al., 2004; Rohlfing and Maurer, 

2001; Rohlfing et al., 2003; Rueckert et al., 1999). As such, the final similarity measure, or 

cost function, is a trade-off between the “voxel intensity or structures similarity” and the 

constraints imposed on the deformation field. The constraint term is usually known as penalty 

or regularization term. 

Particularly in non-rigid registration, the choice of the fixed and moving images could 

produce distinct registration results. This is mainly a consequence of the large number of local 



optimums that the similarity measure used can have. Such problems are known as inverse 

inconsistency and indicate an error in, at least, one of the registration directions. Several 

solutions have been proposed to overcome this problem (Ashburner et al., 1999; Christensen 

and Johnson, 2001; Rogelj and Kovacic, 2006; Shen and Davatzikos, 2002). 

3.2.1 Intensity based similarity measures 

The most commonly used similarity measures are based on intensity differences, intensity 

cross-correlation and information theory. 

The measures based on the intensity difference are usually based on the sum of squared 

differences (SSD) or their normalizations (Ashburner and Friston, 1999; Friston, K. J.  et al., 

1995; Hajnal et al., 1995; Woods, Roger P.  et al., 1998). The assumption behind the SSD 

computed from the voxel intensity is that the corresponding structures in both images should 

have identical intensities. Thus, the lower the SSD is, the better the registered images is. 

The cross-correlation and its derived measures, such as the Pearson’s correlation coefficient 

or correlation ratio, have also been used as image similarity measures (Cideciyan, 1995; 

Collins and Evans, 1997; Hermosillo et al., 2002; Orchard, 2007b; Roche et al., 1998). The 

cross-correlation is based on the assumption that there is a linear relation between the 

intensities of the corresponding structures in both images. Thus, the larger the cross-

correlation is, the better the registered image is. 

The SSD, the cross-correlation and their variants are similarity measures appropriate for 

monomodal image registration. Besides the assumptions previously referred to, these 

measures are also based on suppositions of independence and stationarity of the intensities 

from voxel to voxel. Recently, to overcome these requirements, a new similarity measure, 

called the residual complexity, was proposed in (Myronenko and Song, 2010). 

The information theory based similarity measures are mostly based on the mutual information 

(MI) or derived measures. The MI was simultaneously proposed for image registration by 

Viola and co-workers (Viola and Wells, 1995; Wells et al., 1996) and Collignon and co-

workers (Collignon et al., 1995; Collignon et al., 1997). A few years later, a normalized 

mutual information (NMI) was proposed in (Studholme et al., 1999), which is less sensitive to 

the dimensions of the overlapped image regions. The MI is based on the Shannon entropy that 

is computed from the joint probability distribution of the image voxel intensity. 



Mutual information registration has received so much attention that, a few years after being 

proposed for image registration, a state-of-the-art image registration based on mutual 

information was presented in (Pluim et al., 2003) addressing almost two hundred works on 

that topic. A comparative study on the mutual information and other similarity measures 

based on the information theory is described in (Pluim et al., 2004), and a study on medical 

image registration based on mutual information is presented in (Maes et al., 2003). 

Mutual information (MI) is usually defined as ( ) ( ) ( ) ( ), ,MI X Y H X H Y H X Y= + − , 

where X  and Y  are two random variables, ( )H X  and ( )H Y  are the Shannon's entropy of 

the X and Y variables, respectively, and ( ),H X Y  is the joint Shannon's entropy of the joint 

probability histogram. Other equivalent definitions of the MI exist, see, for example, (Pluim 

et al., 2003). 

Mutual information is a measure on how well one image explains the other image, that is, it is 

based on the simple assumption that there is a functional between the variables involved, e.g. 

between the intensities of both images. The MI can be applied for both intra and inter-modal 

registration, and should have the highest value when the input images are correctly registered. 

Figure 3 shows a registration example based on the maximization of MI. In this example, the 

MI was computed in a ROI that did not contain the frame that was supporting the heads to be 

registered. It should be noted that the low registration accuracy based on the affine 

transformation is because this kind of transformation cannot model the image deformation 

adequately and not because of the similarity measure used. However, better accuracy could be 

achieved by tuning the parameters of the registration methodology more carefully. 

 

[Insert Figure 3 about here] 

 

Mutual information is computed on a voxel by voxel basis, thus it takes into account only the 

relationships between corresponding individual voxels, and consequently does not take into 

consideration relevant spatial information that is inherent to the original images. To overcome 

this drawback, variations of the mutual information have been proposed. In (Pluim et al., 

2000) two similarity measures are suggested, one based on a combination of MI and gradient 

information, and the other one based on NMI and gradient information. Other solutions based 



on mutual information have also been proposed in (Russakoff et al., 2004; Studholme et al., 

2006), by defining a regional mutual information, and in (Loeckx et al., 2010), using the 

conditional mutual information. 

Mutual information has proven to be a very robust and reliable similarity measure for 

intensity-based registration of multimodal images. However, it faces difficulties for 

registration of small sized images. To overcome this limitation, for instance, in (Andronache 

et al., 2008) the MI was used for global registration and the cross-correlation to register the 

small image patches. 

Besides the Shannon’s entropy, other divergence measures have been used, for instance, 

Rény’s entropy (He et al., 2003; Wachowiak et al., 2003), Tsallis’ entropy (Khader and 

Hamza, 2011; Sun et al., 2007; Tsallis, 1988) and Havrda-Charvat’s entropy (Wachowiak et 

al., 2003). 

The joint intensity distribution, which is the basis for the MI, is also used in the definition of 

other similarity measures. For example, in (Chung et al., 2002; Leventon and Grimson, 1998; 

Zhang et al., 2005) the registration methodologies described use prior information on the 

expected joint intensity distribution of the input images when registered to address the 

geometric transformation search. On the other hand, in (Leventon and Grimson, 1998) the log 

likelihood is maximized and in (Chung et al., 2002) the Kullback-Leibler distance is 

minimized. In (Orchard, 2008) the geometric transformation is driven with the goal to build 

compact clusters of the joint intensity scatter plot. 

For DT-MRI images, the similarity measure can be computed as the sum of the similarity of 

the individual channels. For instance, in (Alexander and Gee, 2000; Guimond et al., 2002) the 

normalized SSD computed on all the image channels was considered as the similarity 

measure; however, in (Alexander and Gee, 2000), other similarity measures were also 

considered. In (Cao et al., 2005) the similarity measure used is based on the Euclidean 

distance between the principal eigenvectors of the diffusion tensors. On the other hand, in 

(Chiang et al., 2008) the diffusion tensors are matched based on the minimization of the 

symmetrised Kullback-Leibler divergence between the Gaussian probability density functions 

whose covariance matrices are given by the diffusion tensors. 

To guarantee that the registration process is mainly influenced by the anatomical part that 

should be registered, or to avoid image artefacts or different fields of view (FOV) corrupting 

the registration process, the similarity measure can be computed over only a region of interest 



(ROI) (Elen et al., 2010; Huang et al., 2009). Also, to increase the computational speed of the 

registration process, the similarity measure is frequently evaluated only on an image sample. 

Several comparative studies among similarity measures have been carried out (Jenkinson and 

Smith, 2001; Penney et al., 1998; Pluim et al., 2004). In the study presented in (Pluim et al., 

2004), the mutual information is compared against other similarity measures based on the 

information theory, and a survey on image registration based on mutual information is 

presented in (Pluim et al., 2003). 

3.2.2 Feature based similarity measures 

As aforementioned, depending on the structures extracted from the original images, the 

similarity measures based on intensity can be used in their registration; for example, after the 

segmentation of an organ from the input images, instead of using the binary images 

representing the organ shapes to drive the registration process, the voxel intensities of the 

organ can be used. A similar situation occurs when the segmentation process divides the input 

images into smaller image patches or volumes, and the similarity or “distance” among those 

patches is assessed using intensity based similarity measures. 

As for the SSD, the similarity measure used in the feature based registration is often 

computed as the sum of the “distances” associated to each correspondence established. These 

distances can be related to the spatial position of the corresponding structures, or related to 

other attributes, as in the case of the patch segmentation described above. 

For spatial distance, the Euclidean distance is a common choice. For instance, most of the 

iterative closest point (ICP) algorithms found in the literature use this solution. Other 

examples in which the Euclidean distance is used can be found in (Gefen et al., 2003; Ostuni 

et al., 1997). Additionally, the chamfer distance has also been used in image registration 

solutions (Borgefors, 1988; Itti et al., 1997). 

In (Shen and Davatzikos, 2002) the distance is computed based on a set of rotation invariant 

moments in the neighbourhood of the voxels that drive the transformation. On the other hand, 

similarity measures based on the curvature have been used in surface matching (Tosun and 

Prince, 2008). 

In (Zvitia et al., 2010) the correlation ratio is considered as the similarity measure used to 

register sets of fibres extracted from brain white matter images. The MI can also be used in 



feature based registration; for instance, in (Butz and Thiran, 2001) the MI is computed using 

the image gradient fields. 

 

3.2.3 Regularization terms 

There are several regularization terms, but one of the most used is related to the second-order 

derivatives of the transformation, which are related to the bending energy of the 

transformation (Lötjönen and Mäkelä, 2001; Rohlfing et al., 2003; Shen and Davatzikos, 

2002). 

The Jacobian of the transformation has also been used (Christensen et al., 1997; Noblet et al., 

2005; Rohlfing and Maurer, 2001; Rohlfing et al., 2003); in this case, if the Jacobian is equal 

to one, then the deformation is categorized as incompressible. 

In (Collins and Evans, 1997) the regularization term is based on the motion of each point of 

the moving image. On the other hand, in (Kim et al., 2003) the regularization term used is 

based on the sum of the squared first-order derivatives of the transformation. 

3.3 Optimization 

The similarity measure can be understood as an n-dimensional function, where n is the 

number of degrees of freedom of the transformation involved. For the registration proposed, 

the optimum of this function is assumed to correspond to the transformation that correctly 

registers the input images. The goal of the optimization algorithm used is to search for the 

maximum or minimum value of the similarity measure adopted. Usually, the similarity 

measures are defined in such a way that the optimal registration is accomplished when their 

value is minimized. Thus, the registration problem can be mathematically defined as: 

( )0 1,minT D I T I   , where D  is the distance or similarity measure function, 0I  and 1I  are the 

images or structures to be registered, and T is the transformation. 

Several optimization algorithms have been used in the field of medical image registration, 

including: the Powell’s method (Auer et al., 2005; Collignon et al., 1997; Lavely et al., 2004; 

Maes et al., 1997; Meyer, 2007; Oliveira and Tavares, 2011; Pluim et al., 2000; Pluim et al., 

2004; Sun et al., 2007), the downhill simplex method (Dey et al., 1999; Jenkinson and Smith, 

2001; Shekhar and Zagrodsky, 2002; Shekhar et al., 2004), the Gauss-Newton (Ashburner and 

Friston, 1999), the Levenberg-Marquardt (Kabus et al., 2004; Thévenaz and Unser, 2000), the 



gradient ascent or descent (Balci et al., 2007; Karaçali, 2007; Rohlfing and Maurer, 2001; 

Rueckert et al., 1999; Tang et al., 2006), the quasi-Newton (Khader and Hamza, 2011; 

Loeckx et al., 2010; Mattes et al., 2003), the stochastic algorithms (e.g. simulated annealing) 

(Loeckx et al., 2003; Nikou et al., 1999), and evolutionary algorithms (Butz and Thiran, 2001; 

Pataky et al., 2008; Ruijters et al., 2009). Almost all the optimization algorithms previously 

indicated are described in (Press et al., 2007). 

For deformable medical image registration, the similarity measure used is frequently 

addressed as the energy functional. Therefore, the goal of such registration approaches is to 

find the displacement field that minimizes the energy functional used. The minimization 

problem is frequently converted into a problem of solving a set of partial differential 

equations (PDE). Thus, specialized techniques, such as the finite difference method (Beg et 

al., 2005; Lu et al., 2004), finite element method (Alterovitza et al., 2006; Brock et al., 2005; 

Niculescu et al., 2009), variational method (Hermosillo et al., 2002), and Green’s functions 

based method (Marsland and Twining, 2004), can be used. 

Sometimes the optimization problem is converted into a problem of solving a set of linear 

equations simultaneously. Thus, the solution can be achieved directly, for instance, by using 

the singular value decomposition (Zhilkin and Alexander, 2000) or the least squares technique 

(Friston, K. J.  et al., 1995). 

Some authors have used the support vector machine (SVM) technique in their image 

registration algorithms (Qi et al., 2008; Zhang et al., 2005). These algorithms are frequently 

based on prior information obtained from the joint intensity distribution between two or more 

registered images. This prior knowledge is used in the registration process to estimate the 

similarity measure in function of the geometric transformation. Because the optimization 

based on SVM is a sparse problem, this technique can be very efficient in terms of 

computational time. 

Generally, the similarity measure as a function is not smooth, as it contains many local 

extremes. Some of these local extremes represent local best solutions, but others are a 

consequence of the approach implemented, such as interpolation imperfections and lack of 

robustness of the similarity measure. 

The iterative optimization algorithms are frequently implemented with a multi-resolution or 

pyramidal strategy. This strategy uses a coarse-to-fine approach. Usually, the process starts by 

defining a pair of image pyramids that are used to down-sample the fixed and moving images. 



Then, the registration starts by registering the images from the lower to the higher resolution 

images. In each step, the transformation found in the previous step is used as the new initial 

registration. Relatively to the methods that just use the original images, this approach has 

some advantages, such as: higher convergence radius (also known as capture range), more 

robust to local optimums, and usually faster. Some examples of works in which a multi-

resolution strategy has been used are in (Hellier and Barillot, 2004; Hipwell et al., 2003; 

Loeckx et al., 2010; Mattes et al., 2003; Orchard, 2008; Rueckert et al., 1999; Shekhar et al., 

2005; Staring et al., 2009; Studholme et al., 1997; Thévenaz et al., 1998; Thévenaz and Unser, 

2000). 

For the point correspondence based registration algorithms, the optimal transformation 

between two input images can be directly determined based on the matching established. The 

well-known Procrustes method (Hill and Batchelor, 2001) is an example of this kind of 

minimization strategy. Similar solutions are the ones based on the least squares techniques. 

Optimization algorithms based on assignment algorithms have also been presented (Bastos 

and Tavares, 2004; Oliveira and Tavares, 2008; Oliveira et al., 2009b).  

A comparison among eight optimization algorithms for non-rigid medical image registration 

based on cubic B-spline and the maximization of the mutual information is described in 

(Klein et al., 2007). 

3.4 Interpolation 

In the registration process, when a point is mapped from one space into another space by a 

transformation, it is generally allocated a non-grid position. Thus, it is necessary to evaluate 

the image intensity at the new mapped position. The goal of the interpolation step is to 

estimate the intensity at that new position. 

The interpolation solution used can affect the accuracy and speed of the registration process. 

To increase the speed, a simple interpolation algorithm is usually used in the optimization 

step, as the ones based on the nearest neighbour or linear interpolations, and then an 

interpolation solution of higher quality is used to obtain the final registered image, such as the 

ones based on cubic B-spline or windowed sinc interpolators. In cases when the smoothness 

or robustness of the similarity measure is significantly affected by imperfections of the 

interpolation solution, a superior interpolation solution should also be used during the 

optimization step. 



A study on image interpolation function can be found in (Thévenaz et al., 2000). Additionally, 

in (Tsao, 2003) eight interpolation solutions are compared in a multimodal image registration 

based on maximization of mutual information. 

3.5 Pre-registration 

A bad initial registration can compromise the registration speed or even make it worse, it can 

impede the convergence of the optimization algorithm used in the registration. Thus, in most 

applications, it is important that the initial fixed and moving images are not badly 

misregistered or a good pre-registration solution should be applied to the optimization 

algorithm used. 

Except for the situations where the image features extracted from the images are invariant to 

the geometric transformations, large initial misregistrations between the input images should 

be avoided. An initial pre-registration can be defined manually by the user or by a fully 

automated approach using, for example, image moments as in (Itti et al., 1997; Pan et al., 

2011). 

3.6 Segmentation 

Image segmentation consists of extracting relevant information from the input images. This 

information can be simply established by sets of points, edges, lines, contours, surfaces, areas, 

volumes, medial axes, etc., or descriptors on the objects represented in the images, such as 

distances, lengths, angles, moments or shape signatures or even more complex structures 

containing information about the objects, such as graphs, skeletons or diagrams in the images. 

In some cases, segmentation is an easy task, such as the extraction of fiducial markers placed 

in patients’ bodies with the goal to carry out the registration based on those fiducial markers 

(Maurer et al., 1997), or points of high gradient magnitude (Ostuni et al., 1997). However, in 

the most cases, robust image segmentation is not a trivial task. 

Several image segmentation techniques exist, which can be broadly classified as region or 

border based. Examples of region-based techniques are: thresholding methods (Otsu, 1979; 

Wellner, 1993), watershed (Beucher, 1991; Grau et al., 2004), and region growing (Adams 

and Bischof, 1994). Usual border-based segmentation techniques include edge detectors based 

on image gradient (Canny, 1986; Marr and Hildreth, 1980), corner detectors, line detectors 

based on the Hough transform; deformable models, like active contours, usually known as 



snakes, (Cootes and Taylor, 1992; Gonçalves et al., 2008; Kass et al., 1988; McInerney and 

Terzopoulos, 1996; Xu and Prince, 1998) and level set methods (Han et al., 2009; Wang et al., 

2007; Wang and Wang, 2006). 

Reviews on image segmentation techniques can be found in (Gonzalez and Woods, 2008; Ma, 

Zhen et al., 2010; Monteiro, 2007; Zhang and Lu, 2004; Zhang, 2001). 

3.7 Matching 

In the intensity based registration methodologies previously referred to, a dense matching is 

automatically established based on the geometric transformation found. However, in this 

section, the matching between the features extracted from both input images is considered 

sparse. 

Matching can be established independently of the geometric transformation or iteratively 

based on it. In both cases, a similarity measure between the features to be matched is 

optimized. For the iterative matching optimization, besides the optimization algorithms 

previously indicated, common algorithms are the ICP (Besl and McKay, 1992) and its 

variations (Andreetto et al., 2004; Giessen et al., 2009; Pan et al., 2011; Stewart et al., 2003; 

Tsai et al., 2010). 

The HAMMER algorithm (Shen and Davatzikos, 2002) establishes the matching in a similar 

fashion to the free-form deformation, that is, based on a local search for the best matching. In 

(Wu et al., 2006a) this algorithm is integrated with a machine learning based technique, where 

features are learned from different types of local image descriptors that are selected from a 

training set of registered images. 

For the matching algorithms where the matching is established independently, the geometric 

transformations are also based on the optimization of a similarity or “distance” measure. The 

“distance” among the features to be matched is based on their particular characteristics. 

Dedicated optimization solutions can be used to establish the matching among features, such 

as self-organizing maps (Matsopoulos et al., 2004), simulated annealing (Bayro-Corrochano 

and Rivera-Rovelo, 2009), quasi-orientation maps (Wong et al., 2006), approaches based on 

the Procrustes method (Hill and Batchelor, 2001; Rangarajan et al., 1997), fuzzy clustering 

(Tarel and Boujemaa, 1999), homothetic boundary mapping (Davatzikos et al., 1996), or 

contours mapping via dynamic programming (Oliveira and Tavares, 2008). To match 

relational structures, such as graphs, dynamic programming can be used as in (Maksimov et 



al., 2009). Figure 4 shows an example of registration of two brain images (slices) based on 

contour matching and using dynamic programming. 

 

[Insert Figure 4 about here] 

 

In some matching algorithms, before the computation of the optimal geometric 

transformation, it is important to consider an algorithm to remove outlier matches. The 

random sample consensus (RANSAC) (Fischler and Bolles, 1981) is an example of this kind 

of algorithm, and is applied, for example, in (Wong and Orchard, 2006) to enhance the 

robustness of the matching process. 

3.8 Frequency based methodologies 

The SSD and cross-correlation based similarity measures can be efficiently evaluated in the 

frequency domain using the Fourier transform and its properties. Both measures can be 

directly evaluated in function of an arbitrary shift (Andreetto et al., 2004; Cideciyan, 1995; 

Oliveira et al., 2010; Orchard, 2007a), which is less time demanding than the solution based 

on iterative optimization. The rotational and the scaling of 2D images, can also be achieved 

by transforming the original image spectrums into polar or log-polar coordinate systems 

(Andreetto et al., 2004; Cideciyan, 1995; Kassam and Wood, 1996; Oliveira et al., 2010). 

The well-known phase correlation technique (Kuglin and Hines, 1975) can also be used to 

estimate the optimal registration between two images (Grau et al., 2007; Hoge, 2003; Oliveira 

et al., 2010). 

Also the Fourier transform and wavelet transforms have been used in some image registration 

methodologies (Gefen et al., 2003; Xu and Chen, 2007). 

The image registration techniques based on the optimization of the SSD and cross-correlation 

in the frequency domain can be clearly classified as intensity based; however, since the 

computation is done in the frequency domain, they have been included in this category. 

3.9 Hybrid methodologies 

Various authors have combined two or more registration methodologies/strategies in their 

algorithms (Andreetto et al., 2004; Auer et al., 2005; Chen et al., 2010; Christensen et al., 



1997; Davatzikos et al., 1996; Kim et al., 2003; Liao et al., 2011). Some use feature and 

intensity based registration methodologies concurrently. Sometimes, the similarity measure 

used contains information on the voxel intensity distributions and information on the features 

extracted from the input images simultaneously. 

A common solution is the use of a feature based algorithm for a coarse registration and then 

the use of an intensity based methodology for a fine registration as described in (Chen et al., 

2010; Liao et al., 2011; Oliveira and Tavares, 2011; Postelnicu et al., 2009). For example, in 

(Postelnicu et al., 2009), to optimally register volumetric brain images, relevant geometrical 

information is initially extracted from the segmented surfaces of cortical and subcortical 

structures, and afterwards the surfaces are registered and the deformation found is applied to 

the rest of the volume data. This deformation is then refined in the non-cortical regions with 

an intensity driven optical flow procedure, preserving the initial registration in the cortical 

region. 

In (Christensen et al., 1997) the registration is established in two steps. First, the global 

transformation is determined by using a low-dimensional elastic model; then, the local higher 

deformation is obtained using the Navier-Stokes fluid model. On the other hand, in (Auer et 

al., 2005) a coarse initial registration is defined by maximizing the mutual information using 

the Powell’s method combined with a multi-resolution strategy, and then a fine point-based 

registration is accomplished using an elastic TPS. 

4. Registration accuracy assessment 

Registration is of low value if its accuracy cannot be evaluated. To assess the registration 

accuracy, several approaches have been proposed. Since the image registration problem is 

commonly defined as an optimization problem, the image similarity measure optimization can 

be used as a crude accuracy measure. However, most similarity measures frequently used 

have no geometric/physical significance. 

A simple and generally used approach is to apply a transformation to an image and then use 

the registration algorithm to re-align both images (Balci et al., 2007; Bhagalia et al., 2009; 

D’Agostino et al., 2003; Wang et al., 2005). Then, the applied transformation is used as 

ground-truth. 



An approach closely related to the later is based on synthesizing images by simulating the 

imaging acquisition physics or/and material properties and then evaluating the registration 

algorithm on the synthetic images produced. For example, in (Schnabel et al., 2003) 

physically plausible biomechanical tissue deformations of the breast are simulated using the 

finite element method. 

Other more reliable solutions are by manually identifying a set of corresponding points in 

both input images, e.g. fiducial markers placed into the patients or the organs, and use them to 

assess the registration accuracy (Collignon et al., 1997; Maes et al., 1997; Mattes et al., 2003; 

Penney et al., 1998; Pluim et al., 2000; West et al., 1999; West et al., 1997). 

The target registration error (TRE) is an important measure of the accuracy of the performed 

registration. It evaluates the registration accuracy based on points correspondence. Since its 

value is given in terms of Euclidean distance between the corresponding points, it has an 

immediate physical meaning. Its drawback is its dependency on the fiducial localization error 

(FLE). Studies evaluating the registration errors associated to this kind of registration can be 

found in (Danilchenko and Fitzpatrick, 2011; Dorst, 2005; Fitzpatrick et al., 1998; Ma, Burton 

et al., 2010; Moghari and Abolmaesumi, 2009a; b; Wiles et al., 2008). 

In some studies phantoms are used to assess the accuracy (Rhode et al., 2003; Studholme et 

al., 2000; Wang et al., 2005) since they allow accurate control/simulation of the patients’ 

movements. 

In (Hub et al., 2009), a stochastic approach is proposed to detect areas in which the 

monomodal B-spline based registration performs well and those in which the accuracy is 

lower. Another evaluation on the accuracy of the B-spline registration based approach is 

carried out using synthetic images deformed by the finite element method in (Schnabel et al., 

2003). 

The Dice similarity coefficient (DSC) quantifies the amount of overlapping regions and has 

also been used to assess the registration accuracy (Alterovitza et al., 2006; Loeckx et al., 

2010; Vercauteren et al., 2007). 

Since the image registration task is classically formulated as an optimization problem with a 

multiple set of tuneable parameters, its accuracy also depends on those parameters. Usually, 

such parameters are adjusted manually by observing the registration results, which does not 

always guarantee that the best combination is achieved. A solution to overcome this limitation 

is proposed in (Yeo et al., 2010b). 



Researchers and students can freely download the “Vanderbilt Database” (West et al., 1997), 

hosted by the Retrospective Image Registration Evaluation Project, and test the accuracy of 

their rigid registration algorithms. This project is design to compare CT-MR and PET-MR 

intra-subject registration techniques using brain images from the Vanderbilt Database. The 

ground-truth transforms have been defined using fiducial markers. 

5. Conclusions 

In the last few years, the use of the intensity based registration methods has grown 

considerably compared to the feature based methods. The turning point came with the 

introduction of the mutual information as the similarity measure. Before this introduction, 

multimodal registration was done mainly on segmented images, since no intensity similarity 

measure had been proposed that could be generally and efficiently applied to multimodal 

registration. 

Another important factor that boosted the intensity based registration methods was the 

advance in terms of computational resources, particularly, processing speed and memory 

capacity. Ten or twenty years ago, computers needed hours or days to register two image 

volumes when using intensity based methodologies. Using the same computer resources, the 

registration problem could be solved in less time using feature based methods, since these 

methods use only a small amount of the data from the original images. Today, a simple laptop 

is able to solve the same intensity based registration problem in a few seconds or minutes. 

The growing importance of the intensity based registration methods is also a consequence of 

their simplicity, as there is no need for image segmentation that is usually subject to errors 

and can be complex. 

The growth in computational speed and the high accuracy of the intensity based registration 

methods have stimulated many authors to use them as an initial step in image segmentation 

procedures, since, if the orientation and position of a structure in an input image is previously 

known, the segmentation task can become significantly easier. However, it should be noted 

that, in this case, instead of the segmentation being carried out to allow the registration 

afterwards, as happens in the feature based registration methodologies, here it is the 

registration procedure that facilitates the segmentation task. 



In the field of medical image analysis, image registration is still one of the most active topics. 

If the registration of static images is now well established, the registration of dynamic images 

still presents several difficulties, demanding significant improvements in terms of 

computational speed and registration accuracy. 
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FIGURE CAPTIONS 

Figure 1. Diagram of the typical algorithms used in the intensity based registration 

methodologies. 

Figure 2. Diagram of a typical feature based registration algorithm. 

Figure 3. Registration sequence of two CT volumes of the heads of two subjects. At the top, 

eight slices built on a checker format (by alternating square sub-images from both original 

images) before registration; in the middle, the checker slices built after an affine registration; 

at the bottom, the checker slices built after a free form registration using cubic B-splines. 

Figure 4. Matching and registration of two brain slices. At the top, fixed image overlapped by 

the contour segmented from the corpus callosum, moving image overlapped by the contour 

segmented from the corpus callosum, and the illustration of the matching established. At the 

bottom, input images overlapped before the registration, the same images overlapped after the 

registration, and the difference between the input images after the registration. 



TABLE CAPTIONS 

Table 1: Medical image registration classification criteria proposed by Maintz and Viergever 

(Maintz and Viergever, 1998). 
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TABLES 

Table 1 

Classification criteria Subdivision 

Dimensionality Spatial dimension: 2D/2D, 2D/3D, 3D/3D 
Temporal series 

Nature of the 
registration basis 

Extrinsic (based on 
foreign objects 
introduced into the 
imaged space) 

Invasive Stereotactic frame 
Fiducials (screw markers) 

Non-invasive Mould, frame, dental adapter, etc. 
Fiducials (skin markers) 

Intrinsic (based on 
patient) 

Landmark based Anatomical 
Geometrical 

Segmentation based 
Rigid models (points, curves, 
surfaces, volumes) 
Deformable models (snakes, nets) 

Voxel property based 
Reduction to scalars/vectors 
(moments, principal axes) 
Using full image content 

Non-image based (calibrated coordinate systems) 

Nature of 
transformation 

Rigid (only rotation and translations) 
Affine (translation, rotation, scaling and shearing) 
Projective 
Curved 

Domain of 
transformation 

Local 
Global 

Interaction 

Interactive Initialization supplied 
No initialization supplied 

Semi-automatic 
User initializing 
User steering/correcting 
Both 

Automatic 

Optimization 
procedure 

Parameters computed (the transformation parameters are computed directly) 
Parameters searched for (the transformation parameters are computed using 
optimization algorithms) 

Modalities involved in 
the registration 

Monomodal (CT-CT, MRI-MRI, PET-PET, CTA, etc.) 
Multimodal (CT-MRI, CT-PET, CT-SPECT, PET-MRI, MRI-US, etc.) 
Modality to model 
Patient to modality (register the patient with the coordinate system of the imaging 
equipment) 

Subject 
Intrasubject (same subject) 
Intersubject (different subjects) 
Atlas 

Object 

Head (brain, eye, dental, etc) 
Thorax (entire, cardiac, breast, etc)  
Abdomen (general, kidney, liver, etc) 
Limbs 
Pelvis and perineum 
Spine and vertebrae 
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