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ABSTRACT

Analysis of vascular geometry is important in many medi-
cal imaging applications, such as retinal, pulmonary, and car-
diac investigations. In order to make reliable judgments for
clinical usage, accurate and robust segmentation methods are
needed. Due to the high complexity of biological vascula-
ture trees, manual identification is often too time-consuming
and tedious to be used in practice. To design an automated
and computerized method, a major challenge is that the ap-
pearance of vasculatures in medical images has great vari-
ance across modalities and subjects. Therefore, most existing
approaches are specially designed for a particular task, lack-
ing the flexibility to be adapted to other circumstances. In
this paper, we present a generic approach for vascular struc-
ture identification from medical images, which can be used
for multiple purposes robustly. The proposed method uses
the state-of-the-art deep convolutional neural network (CNN)
to learn the appearance features of the target. A Principal
Component Analysis (PCA)-based nearest neighbor search
is then utilized to estimate the local structure distribution,
which is further incorporated within the generalized prob-
abilistic tracking framework to extract the entire connected
tree. Qualitative and quantitative results over retinal fundus
data demonstrate that the proposed framework achieves com-
parable accuracy as compared with state-of-the-art methods,
while efficiently producing more information regarding the
candidate tree structure.

Index Terms— Vascular Structure, Deep Learning, Prin-
cipal Component Analysis, Nearest Neighbor Search, Gener-
alized Probabilistic Tracking

1. INTRODUCTION

Accurate analysis of biological vasculatures is of significant
importance in several medical image analysis tasks. For in-
stance, cardiac and pulmonary diseases are the two leading
causes of mortality, both of which are closely related to tubu-
lar anatomical structures, i.e. coronary artery, airway, and
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pulmonary vessels. Imaging techniques, such as optic imag-
ing and computed tomography (CT), are commonly utilized
for such investigations. In order to make reliable diagnostic
and prognostic judgments, it is often necessary to extract pre-
cise quantitative information regarding the related vessel ge-
ometry. Therefore, accurate and robust image segmentation
methods are highly needed. However, there are two major
challenges towards an efficient and rigorous system. First,
manual identification of vascular trees is often infeasible for
clinical practice due to the extreme complexity of biological
vasculatures, which makes it too time-consuming and tedious.
Second, the appearance of vascular structures in medical im-
ages has great variance across modalities and subjects. There-
fore, it is quite difficult to have a general description of the
vasculatures. Consequently, most conventional methods rely
on certain assumption for the appearance of a candidate struc-
ture, and are specially designed for a particular task with ex-
clusive models [1]. These models are often carefully crafted
so that they can capture the specific target, and may need to
be modified according to structure size [2]. Due to the struc-
ture complexity and appearance variability, these methods are
often limited in their robustness, and need further processing
steps for better results [3].

In this paper, we present a generic approach for vascular
structure identification from medical images, which can be
applied for multiple tasks robustly. In order to address the
challenges described above, we used deep CNNs [4] under a
probabilistic tracking framework, designed with generalized
particle filter [5]. It has been demonstrated in many applica-
tions that deep learning is capable of capturing the features
of complex shape and appearance patterns, and that it has su-
perior performance over most state-of-the-art methods. By
using deep learning, we shift the difficulty in mathematically
modeling the appearance to the collection of proper training
data, which in most cases is more resolvable. The effective-
ness of CNN for vessel identification is illustrated in previ-
ous study [4], whereas the efficiency, as well as the capabil-
ity of forming a tree structure, can be a challenge for such
algorithms. On the other hand, probabilistic tracking meth-
ods have been investigated in multiple studies for its robust-
ness and efficiency [2]. Typically, the Monte Carlo method is
used to predict the progression of a tracking path. Under this
framework, most research focused on better sampling strate-
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Fig. 1. Flowchart of the vessel tracking method with deep CNN and generalized particle filter.

gies, smarter particle designs, or more accurate observation
models. However, this approach may not be optimal for med-
ical image analysis tasks due to its inherent requirement of
intensity models. Recently, a generalized particle filter has
been proposed in [5]. It no longer estimates the target distri-
bution with random Monte Carlo samples; instead, a contin-
uous Gaussian measure is utilized for the evaluation. Here,
we follow a similar idea and designed a generalized proba-
bilistic tracking method in the discrete space of images using
the PCA and nearest neighbor search concepts from N4 Field
study [4]. This enables us to combine the advantages of both
tracking and deep learning methods. A flowchart of the pro-
posed framework is shown in Fig.1. In the next section, it is
presented in detail.

2. METHODS

As shown in Fig.1, the proposed framework consists of two
main techniques: a learning system trained to generate the es-
timation of local vessel probability map, and a tracking frame-
work based on this map. Specifically, a deep CNN was first
trained to transform an image patch into its corresponding bi-
nary vessel segmentation. Then, the overall vessel probabil-
ity distribution was estimated by combining all binary anno-
tations according to their locations, instead of using random
Monte Carlo samples. Once the probability map was gener-
ated, the tracking was performed via edge sampling, and with
proper learning, structures with significantly different appear-
ances are converted to vessel probability maps.

CNN based Segmentation Map: Deep CNN provides the
capability of learning a set of image properties that allow
prediction of a certain aspect or object of an image, i.e. the
vasculature for our application. The output is usually a set
of labels (classification), or parameters (regression). The aim
of this algorithm is to associate an image patch P with its
potential vessel segmentation B(P ). There are two chal-
lenges for this task. First, the feature space is unnecessarily
large (Nk for k-dimensional input) for CNN output consid-
ering its binary nature; and second, a proper mechanism is
needed to produce the estimated binary segmentation. Hence,
we adopted the PCA and dictionary searching idea from the
N4 Field method [4]. Each training patch PT has a corre-
sponding binary annotation B(PT), and PCA is employed to
reduce the high-dimensionality of the sparse binary annota-
tion B(PT) of size N ⇥ N to a lower-dimensional feature
vector PCA(B(PT)) of size N . Then, the CNN is trained
with input-output pairs {PT,PCA(B(PT))}. Using the
trained CNN, an estimation of the PCA-reduced feature vec-
tor F (P

t

) will be produced for any testing input P
t

. Further,
to find the proper binary annotations for each F (P

t

), a dictio-
nary scheme is employed. Pairs of feature vectors and binary
segmentations {B(PT),PCA(B(PT))} are first extracted
from subset of the training data. These samples are then used
as dictionary D for recovering binary annotations. For any
CNN-predicted feature vector F (P

t

), a query for its nearest
neighbor among dictionary entries PCA(B(PT)) 2 D is
performed to find its closest match, then the corresponding
B(PT) is used as the prediction of segmentation for P

t

.
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Generalized Probabilistic Tracking: With CNN learning,
each image patch can be associated with its closest binary
vessel annotation. As shown in [4], the local vessel prob-
ability at any location can then be estimated by averaging
all neighboring patches annotations. Further, the entire scene
can be processed by computing the probability for all pixels.
However, for our application of vessel structure extraction,
such an exhaustive approach suffers from two major draw-
backs. First, performing computation across the entire image
would be inefficient, with a significant amount of locations
within the image irrelevant to candidate vessel structure. This
may not be very prominent for 2D applications such as reti-
nal fundus image where vessel-related areas can cover about
half of entire scene. However, for 3D applications, such as
airways and cardiac vessels, this ratio may well fall down
to below 1%. Since the CNN dictionary search computa-
tion is fairly expensive, it is more efficient to minimize the
number of non-vessel pixels being evaluated. Second, vas-
culature usually follow a regular connected pattern, and sev-
eral analysis, including tree generation-wise evaluations and
branch length assessment, rely on the construction of a con-
nected tree structure. Therefore, in addition to vessel proba-
bility at specific locations, we often want to simultaneously
recognize its position at the candidate tree structure. How-
ever, with original scheme of exhaustive computation, addi-
tional steps will be necessary to extract the tree and remove
the isolated detections. Thus a method capable of capturing
the connected vascular tree will best fit our needs. Here, we
used generalized probabilistic tracking approach to extract the
vessels efficiently, and areas not connected to the vessel path-
way will not be explored. Vessel tracking aims to estimate the
vessel center, directionality, and branching properties from
a local image window. Conventionally this relies on testing
multiple hypotheses against a model using Monte Carlo ran-
dom sampling. As mentioned, both model design and sam-
pling strategy need to be carefully crafted, limiting the ro-
bustness of the method. By using both CNN based probabil-
ity map and generalized probabilistic tracking, we addressed
these challenges. Under tracking framework, a vessel can be
modeled as a sequence of states S = s

i

: i = 1, ..., n. At a
particular tracking step t, local vessel segment is described
s
t

= (c
t

, v
t

, A
t

) with its center c
t

, orientation v
t

, and appear-
ance model A

t

. Tracking methods try to identify the best fit
s
t

given the observation data O1:t with Bayesian formulation

p(s
t

|O1:t) =
p(O

t

|s
t

)p(s
t

|O1:t�1)

p(O
t

|O1:t�1)
.

Under conventional Monte Carlo framework, a sample-based
representation of the probability distribution is achieved with
M “particles” with hypothesis si

t

and weight wi

t

as

p(s
t

|O1:t) =
MX

i=1

wi

t

�(s
t

� si
t

),

where weight is determined following Bayesian rule and
against models. See [2] for an example of such framework.
Using generalized particle filter, instead of randomly gen-
erating M “particles”, a Gaussian mixture model is used
to estimate the probability distribution. We hereby adopted
similar approximation using the CNN binary results. The
vessel probability distribution (replacing A

t

) is estimated
by considering all binary annotations B

x,y

associated with
neighboring samples within N ⇥ N space N according to
their locations. Consequently, c

t

and v
t

are estimated by
sampling the probability map as shown in Fig.1. An initial
point c0 was first manually placed on the vessel. The vessel
probability distribution within the neighborhood window was
estimated around this point using the established convolu-
tional neural network and dictionary. Then, the direction of
tracking v0 was determined by finding the eigenvector of the
set of point coordinates whose values exceed a certain proba-
bility threshold. A new center c1 was determined by moving
a specified distance in the determined direction. This process
continued until a branch of vessel is fully tracked, which was
determined if the new center’s probability dropped below a
threshold.
Branch Detection: For identifying bifurcations, another neu-
ral network was specifically trained to distinguish between the
different image properties of three categories: branches, back-
ground, and normal vessel segments. When a new sample
window was passed into the network during vessel tracking,
the network would first determine which category the win-
dow falls into. Then, the vessel probability map is generated.
In branching cases, the probability value is sampled along a
half-ellipse ahead of the current center point. To determine
the direction and center of the two next tracking locations,
the intensity profile along the ellipse curve was calculated to
detect the number of local maxima. Each local maximum
was taken as the center of a branch. The new directions were
determined from the current center and the locations of the
local maxima. Each branch was then separately tracked. For
the background case, tracking was terminated, while for the
normal vessel case, tracking was continued as described pre-
viously.

3. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the proposed tracking
method, we used the 20 retinal fundus images from DRIVE
dataset [6]. The CNN follows the model presented by [4, 7].
Three fully connected layers are implemented and half of the
samples are dropped out to avoid over-fitting. A Euclidean-
loss measure is used to determine error of the resulting pre-
diction from the known feature vector output. After the net-
work converged on an error of 1%, the network was tested
on a new set of input samples for validation of the training in
order to assess over-fitting. The network was then extracted
for use in formation of the dictionary. To generate the dictio-

1365



nary, we sampled local patches and their corresponding man-
ual segmentations. Samples were divided the search space to
three categories of background, normal vessels, and branches.
The skeleton of the retinal vessel images was first generated
and analyzed for locating each of the three cases. Then sam-
ples were generated randomly. Note that branch cases here
cover both branching and crossing. In order for the result-
ing learned network to be generalizable, we sampled various
types of vessel thickness, orientation, and branch structure.
Each type was balanced with an equal number of members.
Furthermore, all the acquired samples were reflected on the
x-axis and y-axis as well as rotated multiple times to random
degrees of rotation. Here, we generated in total 14,400 train-
ing samples.
Accuracy: The proposed accurate and robust tracking sys-
tem is based on N4 Field algorithm; hence, we expect them
to have comparable performance. Indeed, the resulting tree
from tracking is guaranteed to be connected, while for N4
computation, there could be isolated segments in the final re-
sult. These unconnected segments could contribute to slight
accuracy gain, but could often be undesirable for clinical ap-
plications. Fig.2 illustrates the qualitative results. For com-
parison, in addition to N4 Field result, we selected a learning-
based method of unsupervised fuzzy segmentation [8], and
a tracking-based method of multi-scale line tracking [9]. As
shown, the proposed method achieves almost identical result
as N4 Field, which is better than other previous approaches.
ROC curves of both the N4 Field method and the tracking

Fig. 2. a) Retinal image, b) Manual segmentation, c) Proposed
tracking segmentation, d) Unsupervised fuzzy segmentation [8], e)
Multi-scale line tracking [9], f) N4 Field segmentation [4]. Green
region shows false positives caused by optic disk.

method were shown in Fig.3, against manual segmentations.
As listed in Table 1, the quantitative result of the area un-
der the curve (AUC) was found to be 97.01% for the tracking
method, which is comparable to full N4 computation, and su-
perior to all other state-of-the-art methods, as listed in [10].

Efficiency for medical image analysis: One major contri-

Table 1. AUC statistics for different vessel segmentation methods
Method N4 Field [4] Proposed Fuzzy [8] Tracking [9]

AUC 0.9767 0.9701 0.9518 0.9273

bution of this work is to significantly reduce the computation
complexity of the exhaustive N4 Field with tracking scheme.
Theoretical limit of efficiency gain is the ratio between the
number of total voxels NFull and voxels visited for vessels
NTrack. From our experiment of 2D retinal image where this
ratio is around 2, the actual tracking is about two times faster,
i.e. close to theoretical limit. This speedup will be far greater
for 3D medical images, where the ratio reaches beyond 100.

Fig. 3. ROC curves of Full N4 Field segmentation (red dashed) vs.
Proposed Tracking scheme (blue solid)

4. DISCUSSION AND CONCLUSION

In this study, we presented a generic approach for vascular
structure identification. The proposed algorithm combines
the advantages from recent discoveries in computer vision
and mathematics for addressing specific accuracy and effi-
ciency challenges in medical image analysis. Specifically, a
deep CNN is trained for estimating local vessel probability
via PCA and nearest neighbor search, and the resulting map
is further utilized within a probabilistic tracking framework
to extract the entire connected tree. Performing CNN for all
pixels can result in a loss in efficiency; also, no information
regarding the tree structure can be simutaneously extracted.
Conventional tracking is prone to the inflexibility from model
design and sampling strategy. By combining the two, CNN
provides probability distribution for tracking efficiently.

Experimental results using 2D retinal data demonstrated
its superior performance over most of the existing methods.
The proposed method enhanced the efficiency of full image
CNN result, losing only minimal unconnected vessels. Also,
it provided the tree structure of the candidate vessel map. This
method would be more efficient if there are fewer pixels seg-
mented in the tracking method as compared to the full CNN
method. Therefore, it would provide feasible solution for 3D
medical tasks, which is the next step of this research.

1366



5. REFERENCES

[1] Ziyue Xu, Ulas Bagci, Brent Foster, Awais Mansoor,
Jayaram K. Udupa, and Daniel J. Mollura, “A hybrid
method for airway segmentation and automated mea-
surement of bronchial wall thickness on CT,” Medical

Image Analysis, vol. 24, no. 1, pp. 1 – 17, 2015.

[2] Fei Zhao and R. Bhotika, “Coronary artery tree track-
ing with robust junction detection in 3D CT angiogra-
phy,” in Biomedical Imaging: From Nano to Macro,

2011 IEEE International Symposium on, March 2011,
pp. 2066–2071.

[3] Ziyue Xu, Fei Zhao, R. Bhagalia, and B. Das, “Generic
rebooting scheme and model-based probabilistic prun-
ing algorithm for tree-like structure tracking,” in
Biomedical Imaging (ISBI), 2012 9th IEEE Interna-

tional Symposium on, May 2012, pp. 796–799.

[4] Yaroslav Ganin and Victor Lempitsky, “N4-fields: Neu-
ral network nearest neighbor fields for image trans-
forms,” in Computer Vision – ACCV 2014, vol. 9004
of Lecture Notes in Computer Science, pp. 536–551.
Springer, 2015.

[5] D. Crisan and K. Li, “Generalised particle filters with
Gaussian mixtures,” Stochastic Processes and their Ap-

plications, vol. 125, no. 7, pp. 2643 – 2673, 2015.

[6] J.J. Staal, M.D. Abramoff, M. Niemeijer, M.A.
Viergever, and B. van Ginneken, “Ridge based vessel
segmentation in color images of the retina,” IEEE Trans-

actions on Medical Imaging, vol. 23, no. 4, pp. 501–509,
2004.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Informa-

tion Processing Systems 25, F. Pereira, C.J.C. Burges,
L. Bottou, and K.Q. Weinberger, Eds., pp. 1097–1105.
Curran Associates, Inc., 2012.

[8] GiriBabu Kande, P.Venkata Subbaiah, and T.Satya
Savithri, “Unsupervised fuzzy based vessel segmenta-
tion in pathological digital fundus images,” Journal of

Medical Systems, vol. 34, no. 5, pp. 849–858, 2010.

[9] Marios Vlachos and Evangelos Dermatas, “Multi-scale
retinal vessel segmentation using line tracking,” Com-

puterized Medical Imaging and Graphics, vol. 34, no. 3,
pp. 213 – 227, 2010.

[10] M.M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanon-
vara, A.R. Rudnicka, C.G. Owen, and S.A. Barman,
“Blood vessel segmentation methodologies in retinal
images: A survey,” Computer Methods and Programs

in Biomedicine, vol. 108, no. 1, pp. 407 – 433, 2012.

1367



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 18.00 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     18.0000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     5
     4
     5
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     5
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



