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Fast Convolutional Neural Network Training Using
Selective Data Sampling: Application to Hemorrhage
Detection in Color Fundus Images

Mark J. J. P. van Grinsven*, Bram van Ginneken, Carel B. Hoyng, Thomas Theelen, and Clara I. Sanchez

Abstract—Convolutional neural networks (CNNs) are deep
learning network architectures that have pushed forward the
state-of-the-art in a range of computer vision applications and are
increasingly popular in medical image analysis. However, training
of CNNs is time-consuming and challenging. In medical image
analysis tasks, the majority of training examples are easy to clas-
sify and therefore contribute little to the CNN learning process.
In this paper, we propose a method to improve and speed-up the
CNN training for medical image analysis tasks by dynamically
selecting misclassified negative samples during training. Training
samples are heuristically sampled based on classification by the
current status of the CNN. Weights are assigned to the training
samples and informative samples are more likely to be included
in the next CNN training iteration. We evaluated and compared
our proposed method by training a CNN with (SeS) and without
(NSeS) the selective sampling method. We focus on the detection
of hemorrhages in color fundus images. A decreased training time
from 170 epochs to 60 epochs with an increased performance—on
par with two human experts—was achieved with areas under the
receiver operating characteristics curve of 0.894 and 0.972 on two
data sets. The SeS CNN statistically outperformed the NSeS CNN
on an independent test set.

Index Terms—Convolutional neural network, deep learning,
hemorrhage, selective sampling.

I. INTRODUCTION

ONVOLUTIONAL neural networks (CNNs) have been
widely adopted in the field of computer vision [1], [2].
These models are based on convolution operations applied to
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the input image at multiple hierarchical layers. CNNs are very
powerful because they can be trained end-to-end in a super-
vised manner and thus obviate the need to manually devise fea-
tures, and have substantially outperformed the state-of-the-art
for classification of natural images on large and well established
databases [3]-[5]. In medical image analysis, CNNs are also
increasingly used. Their capability to learn a complex, hierar-
chical representation of the data makes CNNs useful to discern
the complex disease specific patterns, difficult to be encoded
by humans and by simpler traditional classifiers. Recent works
on cancer detection and brain segmentation have shown CNN
achieved remarkable performance [6]-[8]. However, the need
of large high-quality training sets to accurately train CNNs pre-
vent a wider adoption of these networks in medical imaging.
CNN training process is a sequential process requiring many
iterations (or epochs) to optimize the network parameters and
learn discriminative features [2]. In every epoch, a subset of
samples is randomly selected from the training data and is pre-
sented to the network to update its parameters through back-
propagation, minimizing a cost function. In this work we focus
on finding diseased regions in images, a common task in medical
image analysis. In such a classification task, CNNs are trained
with small patches centered on pixels of interest. Although this
results in vast training sets of image patches, the quality of the
data is suboptimal: the normal class is extremely over-repre-
sented in this classification task and, moreover, the majority of
normal training samples are highly correlated due to the repeti-
tive pattern of normal tissues in each image. Only a small frac-
tion of these samples are informative. Treating uniformly this
data during the learning process leads to many training iterations
wasted on non-informative samples, making the CNN training
process unnecessarily time-consuming. An approach to identify
informative normal samples will help to increase the efficiency
of the CNN learning process and to reduce the training time.
Boosting techniques have been previously proposed to
focus the learning process on informative samples in order
to increase the performance of simple classifiers [9]. These
techniques create an ensemble of learners, each trained consec-
utively, where more emphasis is put on samples misclassified
by the previous learners [9], [10]. Classification is performed
by combining the outputs of each of the individual learners.
A simplified version of the boosting strategy is a two-step
approach in which misclassified samples of an initial model
are used as the training set of a second, independent learner
[6], [11]. The second learner, which is trained then with only
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Fig. 1. Example of a color fundus image showing presence of hemorrhages.

informative samples, is used for final classification. In general,
boosting strategies rely on the optimization of different classi-
fiers in cascade in order to discover informative samples (i.e.,
misclassified samples) for the next learner. Considering the
high computational expense of CNN optimization, a boosted
cascade of CNNss is inefficient, increasing the time complexity
with the number of CNNs in the ensemble. In contrast to
boosting techniques, dynamically sampling strategies focus the
learner on informative samples during its optimization process,
in order to simultaneously increase the classification perfor-
mance and reduce training time. To achieve this, the training
set is dynamically updated during the learning process of a
single learner, putting more emphasis on informative samples
[12]-[14]. These dynamic sampling strategies have shown
to reduce the training time and outperform boosting types of
strategies [13]. However, the challenge of these sampling tech-
niques is defining a sampling heuristic optimal for the learner
and the characteristics of the data and task at hand. To the best
of our knowledge, the incorporation of a dynamic sampling
strategy in the CNN learning process for medical image tasks
has not been proposed yet.

In this paper, we propose an innovative sampling heuristic
to identify informative training samples in a common medical
image classification task, namely abnormality detection. The
proposed heuristic will dynamically increase the probability of
misclassified normal samples to be selected in each training iter-
ation. We integrate this heuristic in the CNN learning process in
order to increase its efficiency and reduce its training time, while
maintaining its performance. The performance of the proposed
method is then validated in two large datasets for the detection
and localization of hemorrhages on color fundus images. Hem-
orrhages are one of the visible signs on color fundus images
of diabetic retinopathy (DRP), a vision threatening disease af-
fecting patients with diabetes [15]. Fig. 1 shows an example of
a color fundus image including hemorrhages and typical con-
founding elements in hemorrhage classification.
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Hemorrhage detection is of high importance for the automated
detection and staging of DRP, the most important cause of blind-
ness in the working population. Whereas a lot of methods have
been presented for the automated detection of micro-aneurysms
in color fundus photographs, detection and segmentation of
larger hemorrhages has received less attention [16], [17]. Hem-
orrhages and micro-aneurysms are mostly detected together and
associated with a single label. In previous works, approaches
based on morphological operations [ 18], wavelet operations [19]
and manual designed features in combination with statistical
classifiers [20]-[23] were used for the detection of hemorrhages
and micro-aneurysms. Although hemorrhages are different in
size and shape and pose different clinical relevance [15], only
few works have addressed the identification of hemorrhages
separately on color fundus images [24], [25].

Section II provides a description of the different data sets
used in this work. The proposed method and experimental
design are described in detail in Section III and Section IV.
In Section V, the results are shown which are discussed in
Section VI. Section VII concludes the proposed work.

II. MATERIALS

Two independent data sets were used in this study for training
and evaluating the proposed method. 1) a subset of images from
the ”Diabetic Retinopathy Detection” challenge database from
Kaggle! and 2) images from the publicly available Messidor
database?.

A. Dataset Description

1) Kaggle Database: The Kaggle data set consist of 35,126
training images graded into five DRP stages and 53,576 test im-
ages with undisclosed DRP stage. Images were acquired using
multiple fundus cameras and different field of view. Details
about image acquisition, such as camera type and field of view,
are not revealed. More information about the data can be found
in the challenge website.

A subset consisting of 6,679 images was selected from the
Kaggle training set. This subset consists of 4,450 randomly se-
lected images from DRP stage 0 (normal), 488 randomly se-
lected images from DRP stage 1 (mild), 1,058 randomly se-
lected images from DRP stage 2 (moderate) and 593 randomly
selected images from DRP stage 3 (severe). Images on which the
retina was not visible were not included in this study dataset.

The selected 6,679 images were further split into a fixed
training, monitoring and test set according to a 60-20-20 split.
Images from the same patient were kept in the same subset.

2) Messidor Database: The publicly available Messidor
database consists of 1200 images acquired at three different
sites. Images were acquired using a color video 3CCD camera
on a Topcon TRC NW6 non-mydriatic retinograph with a 45
degree field of view. The images have resolutions of 1440960,
2240x% 1488 or 2304 x 1536 pixels. More details about the data-
base can be found in the corresponding website. The Messidor
set will be exclusively used as an independent set for testing.

Thttps://www kaggle.com/c/diabetic-retinopathy-detection

2Kindly provided by the Messidor program partners (see http://messidor.
crihan.fr)
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TABLE I
REFERENCE ANNOTATION STATISTICS. PLUS AND MINUS SIGNS INDICATE THE
NUMBER OF POSITIVE AND NEGATIVE IMAGES, RESPECTIVELY. THE NUMBERS
BETWEEN BRACKETS INDICATE THE NUMBER OF GOOD QUALITY IMAGES AND
NUMBER OF HEMORRHAGES ON GOOD QUALITY IMAGES

Training stage Test stage
Training  Monitoring Kaggle Messidor
+ 655 224 288 (197) 321 (289)
- 3304 1104 1104 (593) 879 (813)
Lesions 3290 1038 1095 (818)

B. Reference Standard and Observer Annotations

In this study, annotations were performed by three different
independent observers, having 5 years, 12 years and over 15
years of experience, respectively. The first observer annotated
and graded training, monitoring and test data. We referred to this
observer as the reference observer. The two other observers (re-
ferred to as Observer 1 and Observer 2) graded only the test sets.
These two observers were used to report human performance on
the test data.

The reference observer indicated presence of hemorrhages on
both the Kaggle and Messidor set. In the Kaggle set, this ob-
server also annotated the center point of each individual hem-
orrhage in the training, monitoring and test sets. Furthermore,
the reference observer indicated good or poor quality for each
of the test images in both sets. An overview of the reference set
can be seen in Table I. No individual hemorrhage lesion anno-
tations were performed in the Messidor set.

III. METHODS

A dynamic CNN training strategy is presented where infor-
mative normal samples are dynamically selected at each training
epoch from a large pool of medical images. A dynamic weight
is assigned to each pixel in the negative training pool indicating
its informativeness level. After each CNN training epoch, the
weight of each negative training pixel is updated. This process
is repeated until a stopping criterion is reached. The final trained
CNN is used to classify each pixel in the test images, resulting
in a pixel probability map for each test image.

A. Preprocessing

In a preprocessing step, the field of view of the color fundus
images is segmented to limit the analysis of the CNN to the re-
gion of interest. Circular template matching is used to extract
the field of view and images are cropped to the square bounding
box of this circular field of view [26]. Images are resized to
512 x 512 pixel dimension to reduce the computational costs
and preprocessing was applied to improve image contrast [27],
[28]. A contrast enhanced image I...(z,y; o) is obtained as fol-
lows [29]:

Le(x,y;0) = al(z,y) + 8G(x,y;0) * I(z,y) +~v (1)

where * represents the convolution operator and G(z,y;0) a
Gaussian filter with scale ¢. Values of the parameters were em-
pirically chosen as: &« =4, 3 = —4, 0 = 512/30 and v = 128.
The contrast enhanced image values are used as input for the

1275

(@) (b)

Fig. 2. Contrast enhancement preprocessing step. (a) Original color fundus
image I. (b) Contrast enhanced image I...

CNN. Fig. 2 shows an example image before and after applying
the contrast enhancement step.

B. Training Data Preparation and Augmentation

Images which do not contain any hemorrhage are defined as
negative images, whereas images with hemorrhages are defined
as positive images. To construct the CNN training data, pixels
are extracted from these images, where negative pixels are ex-
tracted only from negative images and positive pixels are ex-
tracted only from positive images at hemorrhage locations. Cor-
responding training patches, centered on the extracted pixels,
of size 41 x 41 pixels and 3 channels depth are created during
the CNN training routine. The patch label is determined by the
label of the central pixel. Data augmentation by spatial trans-
lation with one pixel in both horizontal and vertical direction
and vertical and horizontal flipping is applied to the positive
patches to artificially increase the number of positives. Negative
patches were also randomly flipped vertically and horizontally
to counter for possible over-fitting.

C. Network Details

The CNN architecture used in this study consists of five con-
volutional layers followed by rectified linear units (ReLUs) [4]
and spatial max-pooling. The final layers of the network con-
sist of a fully connected layer and a final soft-max classifica-
tion layer. Inspired by the OxfordNet [30] which showed good
performance for the classification of images of natural scenes,
we use 32 small size filters of size 3 x 3 pixels in each con-
volutional layer. Max-pooling of size 2x2 and a stride of 2 is
applied after the first two convolutional layers, halving the fea-
ture map sizes after the operations. Max-pooling reduces the
number of free parameters and introduces small spatial invari-
ance in the network [31]. The fully connected layer consist of
1024 nodes followed by a soft-max logistic regression which
outputs a score ranging between 0 and 1, indicating the proba-
bility of the pixel to belong to the positive class. Weight-decay
of 5 - 107% is added to each layer to penalize large weight pa-
rameters during back-propagation of the gradient in the opti-
mization routine. Table II and Fig. 3 show an overview of the
network architecture with the omission of the ReLUs. All net-
work parameters are randomly initialized according to a normal
distribution with variance equal to 0.05. The CNN is trained
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Fig.3. Schematic overview of the CNN architecture containing convolutional layers, max-pooling layers, a fully connected layer and a soft-max logistic regression

classification.

TABLE II
ARCHITECTURE OF THE CNN. FOR EACH CONVOLUTIONAL LAYER,
THE width & height x depth OF THE KERNELS IS REPORTED WITH
THE K NUMBER OF KERNELS. IN EACH MAX-POOLING LAYER,
22 MAX-POOLING IS APPLIED WITH STRIDE & pixels

Layer Operation Input size Details
Layer 1 convolution 41x41 3x3x3, K =32
Layer 2 max-pooling 39x39 2x2, a =2
Layer 3 convolution 20x20 3x3x32, K =32
Layer 4 max-pooling 18x18 2x2, a =2
Layer 5 convolution 9x9 3x3x32, K = 32
Layer 6 convolution 7x7 3x3x32, K =32
Layer 7 convolution 5x5 3x3x32, K =32
Layer 8 | fully connected 3x3 1024 nodes
Layer 9 soft-max 1024x1 2 classes

using stochastic gradient descent with learning rate of 5 - 1075,
minimizing a cost function C' defined as follows:

B
Cl,s)=— Zli log(s;) + (1 — ;) log(1 — s;) )
i=0

where s is the assigned pixel probability score, I the reference
pixel label and B the total number of samples in one mini-batch.
A mini-batch size of 256 patches is used and one epoch is de-
fined as 4000 mini-batches. This means that around one million
samples, of which half are positive and half are negative, are
used in one epoch to train the CNN.

D. Selective Sampling

Ateach CNN training epoch, a weight is assigned to each neg-
ative sample, proportional to their sampling probability: higher
weight means a higher probability to be selected for the next
epoch. In order to reduce the number of redundant samples in the
training set, higher weights are assigned to representative sam-
ples. In this work, representative sample are considered those

negative samples with a larger classification error at the current
CNN state.
Given X = {(x;,1;)} the set of N training pixels x; and their

corresponding reference label I; with i = {1,..., N}, let X}
and X_ be the sets of positive and negative pixels:

(Y_;,_ = {(X,,lJ,ViL’Z with lz == 1}

X_—= {(Xi7 lJ,VJw with lz = 0} (3)

where X = X, UA_.

The proposed iterative algorithm for dynamically selecting

training pixels to train a CNN ¢ follows these steps:

1) Initialize the sets of positive pixels X% C X and negative
pixels X! C X_ by randomly selecting M samples with
replacement for each class from X, and X_, respectively.

2) Train the network ¢ with X* = X% U X" using stochastic
gradient descent.

3) Classify each pixel #; in X' with the trained network ct.
A pixel probability score st is obtained for each z; in X_
after classification.

4) Assign each z; in X a weight w! =| st — I, |. A higher
weight is assigned to those pixels of which the preliminary
network prediction differs the most from the initial refer-
ence label.

5) Update X% and X* by selecting A samples for each class.
z; in XY is selected randomly while z; in X* is selected
with probability p! [32]-[34]:

: wi 4
P; Sex W “4)

6) Train the network ¢ with X* = X% U X" using stochastic

gradient descent.

7) Repeat steps (3)-(6) until a stopping criterion is reached.
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In this proposed iterative selective sampling (SeS) algorithm,
the pool of negative and positive training pixels is dynamically
changed at each training epoch, preventing the training process
to focus on redundant negative samples and efficiently train the
CNN. The parameter M is not tunable by itself but is dependent
on the mini-batch size and the number of mini-batches in one
epoch. Changing the value of M can be done by modifying ei-
ther one of these two. In order to obtain a more efficient scheme,
we consider applying step (3) and (4) once every five epochs.

E. CNN Training Monitoring

To determine when the CNN training process is completed
and avoid over-fitting, the CNN performance during training
is monitored during training on an independent monitoring
set. Although the problem of over-fitting is countered by
using different training pixels in each training epoch, an in-
dependent measure to determine when to stop the training
procedure is still required. One way to measure performance
is by measuring the pixel classification performance using the
area (Az) under the Receiver Operating Characteristics (ROC)
curve [35]. However, Az values of pixel-based ROC curves
are misleading due to the unequal distribution of positive and
negative pixels. Therefore, we measure the Az value based on
image classification performance. A score for each image is
obtained by classifying all pixels in the image and considering
the maximum pixel probability as the image score. When the
Az value on the monitoring set has reached a stable maximum,
determined after visual inspection, the CNN training phase is
considered finished.

F. Hemorrhage Classification

Given an unseen test input image, the CNN classifies every
pixel in the image and returns a probability map indicating for
each pixel the probability to belong to a hemorrhage. We post-
process this probability map to extract hemorrhage candidates
and compute an image score describing the probability of the
image to contain hemorrhages.

1) Hemorrhage Lesion Identification: The obtained pixel
probability map is convolved with a Gaussian filter with scale
¢ = 1 to smooth the values. Candidate hemorrhage regions are
identified by detecting local maxima in the smoothed pixel prob-
ability map. The local maxima locations are used as seed points
for dynamic programming to segment the individual hemor-
rhage candidates [36]. The dynamic programming algorithm is
driven by a cost function computed as the gradient magnitude of
the smoothed pixel probability map. The segmented candidate
is assigned a final probability equal to the average of the pixel
probabilities inside the candidate.

2) Identification of Images With Hemorrhages: To determine
if an image contains hemorrhages, an image score is computed
from the obtained pixel probability map. After the Gaussian
smoothing step is applied to the pixel probability map, the max-
imum pixel probability is assigned as image score.

IV. EXPERIMENTAL DESIGN

To compare the performance of the proposed SeS algo-
rithm, a second CNN with the same network architecture was
trained using the same pool of training images. However, at
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each training epoch random sampling of training pixels was
performed. This means that each pixel has an equal chance
of being used in the training procedure. This non-selective
sampling (NSeS) CNN was also monitored using the same
monitoring data set and the same stopping criteria. To train and
monitor both CNNs, the Kaggle training and monitoring set
were used, respectively. After both CNNs were trained, results
were computed on the two test sets.

We evaluated the proposed SeS scheme by conducting the

following experiments:

1) Evaluation of CNN performance during training: The Az
value on the monitoring set was measured during CNN
training for both the SeS and NSeS CNNs and the required
number of training epochs was compared.

2) Evaluation of hemorrhage lesion identification: Free-re-
sponse ROC (FROC) analysis was employed to compare
the CNN performance for the detection of individual hem-
orrhages [35]. In here, only false positives encountered on
negative images were taken into account to prevent ambi-
guities in the reference annotation to influence the result
[371, [38]. Additionally, there is no clinical relevance in
a screening setting for false positives detected on images
containing hemorrhages as these patients should be sent for
referral. To determine if a hemorrhage was detected by the
CNN, the distance between the manually annotated hemor-
rhage center location and the seed point of the segmented
candidate was used, with a maximum tolerance of 8 pixels.
This value was empirically determined using visual inspec-
tion of the average hemorrhage size on the 512 x 512 pixel
resolution images. Detected regions which had no refer-
ence hemorrhage center location within this 8 pixel circular
radius were considered as false positives.

3) Evaluation of identification of images with hemorrhages:
ROC analysis was performed to evaluate the performance
on identification of images with hemorrhages. Bootstrap
analysis with 10,000 bootstraps was used to compute 95%
confidence intervals for the Az values [39], [40]. A level of
significance of ¢ = 0.05 was used for statistical compar-
ison of the CNNs. Sensitivity, specificity and kappa agree-
ment of the CNN's with respect to the reference were calcu-
lated at the operating point on the ROC curve closest to the
upper left corner of the graph. These measures were also
computed for Observer 1 and Observer 2.

4) Evaluation of the influence of image quality: In order
to assess the influence of image quality on the CNN
performance, images graded by the reference observer
as having poor image quality were removed from both
test sets. CNN performance on image level was measured
using ROC analysis and sensitivity, specificity and kappa
agreement values were calculated.

V. RESULTS

A. CNN Performance During Training

During training, performance was measured on the moni-
toring set during the CNN training process. Fig. 4 shows the Az
values measured on image level as function of the number of
training epochs. The performance of the CNNs increased over
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Fig. 4. Image-based Az values on the monitoring set for the SeS CNN and
NSeS CNN over a number of training epochs. Shaded regions indicate the 95%
confidence intervals of the Az values. After 60 and 170 epochs, the training
phases of the SeS CNN and NSeS CNN were considered finished.

time and finally converged to a stable maximum performance.
For the SeS CNN, this maximum performance was achieved
after 60 training epochs and for the NSeS CNN this maximum
was achieved after 170 training epochs. Both these networks,
i.e., the SeS CNN after 60 epochs (SeS CNN 60) and the NSeS
CNN after 170 epochs (NSeS CNN 170) were used to compute
hemorrhage detection results on the two independent test sets.

Fig. 5 shows example outputs of the SeS CNN and NSeS
CNN after different numbers of training epochs as heat-map
overlays on the example input image shown on top and in
Fig. 2(a). After training for a small number of training epochs,
both CNNs incorrectly classified all dark normal structures,
such as vessels and fovea, but were able to correctly classify
the normal background pixels. As CNN training continues, the
CNNs learn to separate hemorrhages and the normal retinal
structures are correctly classified as negative. For the SeS CNN,
this learning process required less training epochs.

B. Hemorrhage Lesion Identification

Fig. 7 shows the FROC curves for the SeS CNN 60 and the
NSeS CNN 170. The NSeS CNN after 60 epochs is included
for direct comparison with the SeS CNN 60, showing a lower
overall FROC curve compared to the SeS CNN 60 and NSeS
CNN 170. At 1 false positive per normal image the SeS CNN
60 and NSeS CNN 170 achieve sensitivities of 0.786 and 0.753,
whereas at 0.1 false positives per normal image, both CNNs
achieve sensitivities of 0.511 and 0.316, respectively. In Fig. 6,
example images with annotated hemorrhage center locations
and the outputs of the SeS CNN 60 networks are shown.

C. Identification of Images With Hemorrhages

Fig. 8 shows the ROC curves of both CNNs on the Kaggle
and Messidor test set. For the NSeS CNN, the performance after
60 epochs was also calculated and shown in the graphs for di-
rect comparison with the SeS CNN 60. Operating points of both
human observers are added in the plots. On the Kaggle test set,
there was no significant difference (p-value = 0.509) between
the SeS CNN 60 and NSeS CNN 170, whereas on the Messidor
test set, the SeS CNN 60 significantly outperformed the NSeS
CNN 170 (p-value = 0.0028).
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Table I1I shows the contingency table for the observer grad-
ings, the SeS CNN 60 and the NSeS 170 CNN as compared with
the reference. Kappa agreements () with 95% confidence in-
tervals and sensitivity/specificity pairs are included.

D. Influence of Image Quality

The number of poor quality images as indicated by the refer-
ence observer was 602 and 98 in the Kaggle and Messidor test
sets, respectively. Table IV shows the contingency table after
removing the mentioned poor quality images for the observer
gradings, the SeS CNN 60 and the NSeS 170 CNN as compared
with the reference on the two test sets. Kappa agreements (k)
with 95% confidence intervals and sensitivity/specificity pairs
are included.

VI. DISCUSSION

During the time-consuming training process of a CNN, the
majority of samples that are presented to the network are easy
to classify correctly. In this work we hypothesized that we can
speed up the training process by selecting difficult normal sam-
ples to present to the network. We achieved this by classifying
normal images with the current state of the network after a
number of epochs of training, and select more patches from
those regions in normal images that the network considered ab-
normal. More precisely, in the SeS method, dynamic weights
based on the CNN's preliminary classification were computed
for each training sample at selected snapshots during training.
Samples with higher weights were more likely to be selected
for training in the next epochs. Using this scheme, the training
procedure was guided to learn from the more informative sam-
ples. We applied the proposed SeS strategy to the detection of
hemorrhages on color fundus images to show the potential of
this technique in an important medical image analysis applica-
tion. The results showed that the CNN with SeS employed in
the training procedure required a considerably smaller number
of training epochs to achieve a high performance when com-
pared to a CNN without selective sampling.

The SeS CNN required 60 epochs for the training phase to
obtain similar performance as the NSeS after 170 epochs of
training, as illustrated in Fig. 4. When training is conducted
in an iterative approach, which is the case with CNNs, it is
likely that the importance of training samples changes during
this learning process. The ability of the SeS CNN to dynami-
cally change the focus of the learning process attributed to the
speed-up of the learning process, as training time is not wasted
on samples which the networks has already “learned” to classify
correctly. Fig. 5 displays the evolution of the pixel probability
maps when evaluated on one unseen example image. It can be
observed that the SeS CNN learns to differentiate between back-
ground tissue (i.e., blood vessels, fovea and micro-aneurysms)
and hemorrhages faster than the NSeS CNN. Although these
structures are specific to the retina, a similar learning behavior
can be expected on other data sets as the training procedure with
SeS is guided by its own capability to classify these structures.

Performance for the identification of hemorrhages of the SeS
CNN is higher on both test sets as compared to the NSeS CNN,
see Figs. 8 and 7 and comparable to human observer perfor-
mance for the identification of images with hemorrhages. On the
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Input image

SeS CNN

NSeS CNN

5 epochs 15 epochs

NSeS CNN

90 epochs 110 epochs
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170 epochs

Fig. 5. Pixel probability maps obtained by applying the SeS and NSeS CNNs to a sample image from the training set after training the network for a different
number of epochs. Overlays are shown using a heat-map color coding, where red codes for high probabilities and blue for low probabilities. The SeS CNN required
60 epochs to reach final performance while the NSeS CNN required 170 epochs to reach final performance.

independent Messidor test set, this difference was statistically
significant (p-value = 0.0028). The image scores for presence
of hemorrhages were calculated based on the maximum pos-
terior probability in each probability map. Images containing
challenging confounding structures are therefore more prone to
misclassification. As the SeS CNN was guided to learn these
challenging structures, overall classification rates compared to
the NSeS CNN increase. There is a difference in performance
obtained by the CNNs on the Kaggle and Messidor test set.
Performance on the independent Messidor test set is higher as
compared to the one obtained on the Kaggle test set for both
CNNs. An explanation for this can be the presence of other ab-

normalities and the quality of the images in both data sets, see
Figs. 9(a) and 9(b).

Assessment of image quality showed that 602 images
(43.2%) were graded as having poor image quality by the refer-
ence observer in the Kaggle dataset, whereas for the Messidor
test 98 poor quality images (8%) were identified. Fig. 10 shows
two examples of images which were graded as having poor
image quality. This is an indication that the overall image
quality in the Messidor test set is better than the overall quality
in the Kaggle test set, allowing the CNNs to achieve higher
performance.

In this study, we applied the SeS strategy only to the training
samples that belong to the negative class. There is no funda-
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Fig. 6. Left column: example color fundus images from the Kaggle test set. Middle column: reference hemorrhage center locations. Right column: output of the

SeS CNN 60.
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Fig. 7. FROC curves of the SeS CNN 60 and NSeS CNN 170 on the Kaggle
test set. The FROC curve of the NSeS CNN after 60 epochs of training is added
for direct comparison with the SeS CNN after 60 epochs of training.

mental reason why the same strategy could not be applied to the
positive class as well. In our case, the set of positive samples
was limited in numbers and each sample was already presented
multiple times per epoch. If we would increase the number of
positive training samples, either by increasing the amount of
available training images or by applying more data augmenta-
tion, and applying the SeS strategy to the positive class as well
could potentially further increase the detection rates and speed
up training. In this way, also difficult positive samples are pre-
sented more frequently during training. This would guide the

CNN learning procedure to also better recognize the more dif-
ficult hemorrhage structures.

Although we obtained excellent performance for the detec-
tion of hemorrhages, an in-depth optimization of the network
hyper-parameters was not performed in this study. This opti-
mization is a challenging task [41]: The depth of the network,
i.e., the number of layers, and the number of kernels per
layer, as well as the use of fully connected layers should be
more thoroughly investigated. Pilot experiments using MSRA
weight initialization [3] showed an equal number of epochs
required to train the SeS with similar end-performance on
the test sets. Additions such as the inclusion of drop-out [42]
or batch normalization [43] could potentially further increase
performance. Furthermore, a kernel size of 3 x 3 pixels was
chosen. The rationale of using such a small size kernels
is that each larger size kernel, e.g., a 5x5 kernel, can be
represented by multiple smaller sized kernels, i.e., two times
a 3x3 kernel sized layer. Using multiple smaller sized layers
with non-linear rectifications makes the CNN more discrim-
inative and less parameters need to be optimized [30]. The
use of multi-scale patches could potentially be beneficial as
usage of multi-scale patches has shown promising results in
other applications [44]. Optimizing CNN hyper-parameters
is challenging and trying many combinations is common
practice [41]. However, it should be noted that the SeS CNN
was compared to a NSeS CNN using the same network
architecture. A similar improvement in training time and
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Fig. 8. Image-based ROC curves on Kaggle (a) and Messidor (b) test sets. Observer operating points of the human observers are added in the graphs.
(a) Kaggle (b) Messidor.

TABLE 1II

CONTINGENCY HUMAN OBSERVERS, SES CNN 60 AND NSES CNN 170 ON THE KAGGLE AND MESSIDOR TEST SETS. x = KAPPA AGREEMENT
WITH 95% CONFIDENCE INTERVALS, SE/SP = SENSITIVITY AND SPECIFICITY, AZ = AREA UNDER THE ROC WITH 95% CONFIDENCE INTERVALS

Observer 1 Observer 2 SeS CNN 60 NSeS CNN 170
- + - + - + - +
- 1046 58 - 1040 64 - 940 164 - 939 165
Kaggle |3 53 B3 |+ %6 __ 2% |+ &1 |+ 65 23
k= 0.759 [0.716-0.802] | ~ = 0.740 [0.696-0.785] | = 0.598 [0.549-0.648] x = 0.554 [0.501-0.607]
ol Se/Sp = 0.816/0.947 Se/Sp = 0.806/0.942 Se/Sp = 0.837/0.851 Se/Sp = 0.774/0.851
% Az = 0.894 [0.867-0.919] | Az = 0.895 [0.874-0.914]
qg - + - + - + - +
-7 - 781 98 - 764 115 - 803 76 - 807 7
. + 9 312 + I8 303 + 26 295 + 34 287
Messidor | — — = = — — — == - |- — ' _ _ T _ 1 __ s .
x = 0.791 [0.753-0.829] k = 0.742 [0.701-0.783] k = 0.793 [0.755-0.832] x = 0.783 [0.743-0.822]
Se/Sp = 0.972/0.889 Se/Sp = 0.944/0.869 Se/Sp = 0.919/0.914 Se/Sp = 0.894/0.918
Az = 0.972 [0.963-0.980] | Az = 0.959 [0.947-0.970]

classification performance may be expected with a different
network architecture.

Previous works have shown that adding more informative
samples to the training set can improve the performance of the
learner substantially [9], [10], [12]-[14], [45], [46]. In boosting
techniques, an ensemble of learners is trained where each of the
consecutive learners uses a fixed, more informative training set
[9], [10]. Samples that are misclassified by the previous learners
are typically added to the training set of the next learner. Appli-
cation of this boosting approach to CNNs is highly time-con-
suming and inefficient as each of the learners is optimized inde-
pendently and no information, such as network parameters, are
shared between the learners. Taking into account the training
process of a CNN is an iterative process, dynamically updating
the training set in each iterations will avoid the use of multiple
learners, focusing the attention of the learner on informative
samples and optimizing the CNN parameters simultaneously.

Other works have used a two-step approach in which represen-
tative samples are first identified by an initial learner. The first
learner can be either the same learner [11], or a simplified, faster
to train learner [6]. Using this approach, a new dataset is created
which is used for training a second, independent learner. Apart
from the fact that a cascade of two independent learners are still
needed and, consequently, more extra training time, using a sim-
plified learner to select informative training samples does not
guarantee that these samples are also informative for the second,
more complex learner.

Similar to our approach, a previous work has used a dy-
namic sampling approach to train a multi-layer perceptron
(MLP) [13]. In each training epoch, each training sample was
first classified by the current state MLP to assign a sampling
weight and it was determined using a sampling heuristic if
this sample should be included for training. In this case, the
sampling heuristic was designed to include all misclassified
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TABLE IV
CONTINGENCY HUMAN OBSERVERS, SES CNN 60 AND NSES CNN 170 ON THE KAGGLE AND MESSIDOR TEST SETS AFTER REMOVAL
OF POOR QUALITY IMAGES. x = KAPPA AGREEMENT WITH 95% CONFIDENCE INTERVALS, SE/SP = SENSITIVITY AND SPECIFICITY,

Az = AREA UNDER THE ROC WITH 95% CONFIDENCE INTERVALS

Observer 1 Observer 2 SeS CNN 60 NSeS CNN 170
- + - + - + - +
- 568 25 - 563 30 - 536 57 - 486 107
Kaggle [ T2 ___ U4 w3 109 |+ 30 ___le7__ |+ 3 ___168__
Kk = 0.838 [0.794-0.883] | « = 0.805 [0.756-0.853] | ~ = 0.719 [0.663-0.775] Kk = 0.576 [0.512-0.639]
o Se/Sp = 0.883/0.958 Se/Sp = 0.858/0.949 Se/Sp = 0.848/0.904 Se/Sp = 0.827/0.820
5 Az = 0917 [0.888-0.944] | Az = 0.909 [0.884-0.932]
LE - + - + - + - +
~ - 727 86 - 709 104 - 744 69 - 757 56
. + 7 282 + 12 277 + 20 269 + 28 261
Messidor | — — = = — — - == — |- — — ——_ _ L ___ - _ 4 __________.
k = 0.800 [0.761-0.839] | k= 0.753 [0.711-0.796] | x = 0.802 [0.763-0.842] k = 0.809 [0.770-0.848]
Se/Sp = 0.976/0.894 Se/Sp = 0.958/0.872 Se/Sp = 0.931/0.915 Se/Sp = 0.903/0.931
Az =0.979 [0.970-0.985] | Az = 0.966 [0.954-0.976]

(2)

(b)

©

(d

Fig. 9. Examples of errors by the SeS CNN system. (a): example of a retinal
image with different type of abnormality (bright and dark regions on the right
side of the image), (b): output of the SeS CNN 60 computed on (a), (¢): example
or a retinal image with hemorrhages (bottom left and top middle) which was
graded as negative by the reference, (d): output of the SeS CNN 60 computed
on (c). See text in the discussion section for more details.

samples and a selection of correctly classified samples based
on the class balance in the training set and the confidence level
of the current state MLP. However, applying this heuristic to
CNN training for patch classification is not feasible. First, in-
cluding all misclassified samples would lead to the over-fitting
of the network as millions of patches, mainly normal, would
be misclassified, especially in the first iterations. Additionally,
positive samples are highly under-represented in medical im-
ages. Therefore, all the positive samples should be considered
as informative and no prioritizing selection is needed. For that

Fig. 10. Examples of images graded by the reference observer as having poor
image quality.

reason, a sampling heuristic specifically designed for abnor-
mality identification using CNN in medical images was pro-
posed in this work, where a selection of informative negative
samples was performed in each iteration and all positive sam-
ples were randomly included.

A limitation of this study is the use of a manual reference
as provided by a single human expert. As hemorrhages and
micro-aneurysms are similar in characteristics and are only dif-
ferentiable by their size and color on color fundus images, they
can be easily confused [16]. Figs. 9(c) and 9(d) show a retinal
image and the SeS CNN 60 output, respectively. The image
which was graded as normal by the reference but both Observer
1 and Observer 2 indicated presence of hemorrhages. Com-
bining human observer annotations to create a consensus anno-
tation might improve the reference, but prohibits a fair compar-
ison with the performance obtained by one of these observers.
Using an additional external reference such as fluorescein an-
giography, in which the contrast of blood (and therefore also
hemorrhages) is enhanced by a contrast agent, might help to set
a better reference standard [16]. As the data sets used in this
study are retrospectively analyzed and only contain color fundus
images, expert grading on color fundus images was the best
strategy available to us. Furthermore, the reference observer
only indicated the hemorrhage center locations. Therefore, no
detailed analysis on the individual hemorrhage segmentation
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could be performed. This would however be of added value for
clinical studies and more research is needed for a more thor-
oughly evaluation of this task.

After analyzing the Kaggle test set further, we noticed that the
majority of the errors made by human observers were on images
from DRP stages 1 and 2. Images from DRP stage 1 and 2 con-
tain numerous confounding lesions, such as microaneurysms,
which are very difficult to differentiate from hemorrhages and
introduce a high inter-reader variability. When taking only the
images from DRP stage 0 and 3 into account, the agreement of
both observers with the reference was higher with x values of
0.776 and 0.771. This indicated a more reliable grading could
be made on the images from DRP stage 0 and 3. To investi-
gate further the influence of a more reliable annotated training
set, only image from DRP stage 0 and DRP stage 3 were used
from the Kaggle dataset to train and evaluate the CNNs. The
training time for the SeS CNN and NSeS was reduced to 40
and 140 epochs, respectively. The image level performance in-
creased slightly to Az values of 0.919 and 0.907; and 0.981 and
0.967 for the SeS and NSeS CNNs on the Kaggle and Messidor
test sets, respectively. In this subset, we have also investigated
the influence of the color normalization preprocessing step on
the CNN performance. Training the SeS CNN without color nor-
malization took five epochs longer to converge but achieved the
same performance as the SeS CNN using color normalization
in both test sets. This demonstrates that CNN is capable to deal
with the large variability of medical data but it requires more
time to learn this variability during the training phase.

All experiments were performed on an Intel Xeon PC with
2.4Ghz memory and a GeForce GTX 570 video card. The
training time per epoch was around 16 minutes for both the
SeS CNN and NSeS CNN and classifying all pixels in one
image, i.e., computing a probability map, took around 0.82
seconds using a sliding window approach [47]. In our current
implementation, all the weights for the selective sampling were
generated sequentially during one pass over the training set
consisting of 3,959 images, i.e., this means a total time of 54
minutes for weight calculation. The SeS CNN required 60
epochs with 11 weight updates for the training process. The
total time for the SeS CNN to complete the training phase was
then 60 - 16 4+ 11 - 54 = 1554 minutes, whereas for the NSeS,
this was 170 - 16 = 2720 minutes. However, the training time
for the SeS CNN can be reduced significantly by parallelizing
the generation of weights and CNN training. By doing so,
the weights for the training samples can be computed during
CNN training and the total time for the SeS can be reduced to
60 - 16 = 960 minutes.

We have evaluated our proposed strategy using two different
datasets in order to analyze the generalization of the method.
However, more experiments with larger datasets or different
training sets can be done in order to test the strategy more
thoroughly. Increasing the amount of data with robust reference
labels to train the CNNs may also help to further improve
classification performance [48]. A data set with more training
images contains a larger number of diverse training samples
which can help the CNN to generalize better on unseen data.
Using the proposed SeS strategy, the CNN will figure out which
samples to use for training, forestalling an increase in training
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time. Using a much larger data set for training will be part of
future work.

Despite these considerations, it is worthy to note that this
is the first work on automated detection of hemorrhages in
color fundus images that reports performance on par with two
human experts. This result was obtained on a large, completely
independent, publicly available test set, the Messidor database.
Our method has a substantial higher Az value of 0.972 on
this set as compared to previous work which reported an Az
value of 0.87 [25]. However, it has to be noted that a direct
comparison cannot be performed as the training sets differ
and the previous work used only a subset of 900 cases for
evaluation. This excellent result confirms that convolutional
neural networks have great potential to push forward the state-
of-the-art in medical image analysis, similar to what has been
achieved with this exceptionally powerful class of models in
computer vision.

VII. CONCLUSION

We have presented a method to substantially speed-up the
time-consuming training process of convolutional neural net-
works with a selective sampling strategy, named SeS, embedded
in the training procedure. We have demonstrated excellent re-
sults in the identification of hemorrhages on color fundus im-
ages. The SeS method addresses the common issue in medical
image analysis tasks that challenging examples comprise only
a small subset of the available data. By dynamically focusing
the training effort on these samples that pose greater difficulty,
we have shown that an increased overall performance can be
achieved while a smaller number of epochs is required to train
the network.
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